• Title/Summary/Keyword: mMT

Search Result 1,172, Processing Time 0.026 seconds

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

'Saeyoung', a Winter Forage Triticale Cultivare of High-Yielding and Tolerance to Cold (추위에 강하고 수량이 많은 조사료용 트리티케일 품종 '세영')

  • Han, Ouk-Kyu;Park, Hyung-Ho;Park, Tae-Il;Cho, Sang-Kyun;Choi, In-Bae;Noh, Jae-Hwan;Kim, Kee-Jong;Oh, Young-Jin;Park, Ki-Hun;Kim, Dea-Wook;Ku, Ja-Hwan;Kweon, Soon-Jong;Ahn, Jong-Woong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • 'Saeyoung', a winter triticale (X Triticosecale Wittmack) for forage, was developed at the Department of Rice and Winter Cereal Crop, NICS, RDA in 2012. The cultivar 'Saeyoung' has narrow and long leaves of light green color, middle size and thin culm, and a medium grain of brown color. The heading date and yellow ripe stage of 'Saeyoung' was May 3 and May 27, which were similar to check cultivar 'Shinyoung', respectively. 'Saeyoung' showed a little stronger in cold tolerance and a little weaker in resistance to lodging than the check, and wet injury, powdery mildew, and leaf rust were similar to those of the check cultivar. The forage fresh and dry matter yields of 'Saeyoung' at milk-ripe stages were 47.2 and $15.6MT\;ha^{-1}$, respectively, which was 9% and 4% higher than those of the check. The crude protein content of 'Saeyoung' was 0.4% lower than 6.8% of the check, while was higher than the check cultivar 'Shinyoung' in neutral detergent fiber, acid detergent fiber. Total digestible nutrients of 'Saeyoung' was also 3% lower than 62.8% of the check cultivar. It showed grain yield of $4.1MT\;ha^{-1}$, which was 11% higher than that of the check. 'Saeyoung' is recommended for fall sowing forage crops in areas in which average daily minimum mean temperatures in January are higher than $-10^{\circ}C$.

Conjugal transfer and fate of the genetically engineered $Km^{r}$ gene in freshwater environments (유전자 조작기법으로 변형시킨 $Km^{r}$ 유전자의 담수 환경에서의 전이 및 행방)

  • 김치경;이성기
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.219-228
    • /
    • 1990
  • A kanamycin resistance($Km^r$) gene was studied for its transfer in natural freshwater environments by using the natural bacterial isolate(M1) of DK1 and the DKC601 strain, $Km^r$ plasmid of which was genetically engineered from the NI strain. The transfer frequency ofthe $Km^r$ gene and rearrangement of the $Km^r$ plasmid were compared between the gnetically engineered microorganism(GEM) and the NI parental strain by conjugation with the same recipient strain. The transfer frequency of the $Km^r$ gene was about $9.1\times 10^{-12}-1.8\times 10^{-11}$ in both the GEM and NI strains at 5 to $10^{\circ}C$, but the frequency of the NI was about 10 times higher than that of the GEM at 20 to $30^{\circ}C$. The $Km^r$ plasmid in the transconjugants obtained by conjugation of the NI with the MY1 strain as a ricipient showed alot of rearrangement, but the $Km^r$ plasmid transferred from the GEM was stable without alteration of its size. When the MT2 strain was used as a recipient, however, such a rearrangement of the $Km^r$ plamid was observed in the transconjugants obtained from the GEM as well as the NI strain. In those transconjugants obtained from different mating pairs and water environments, the plasmid were appeared to decrease in their number as the period of conjugation time was prolonged, but only the $Km^r$ plasmid transferred from the GEM kept having its size of 52kb. Therefore, the $Km^r$ gene was transferred at the same rate from the GEM and NI strains in natural freshwater environment, but the gene of the GEM strain was more stable than the NIduring conjugation and the $Km^r$ plasmid was rearranged by changing the recipient strain for conjugation in any water environments.

  • PDF

A New Early-Heading and High-Yielding Forage Rye Variety, "Olgreen" (극조숙 청예다수성 호밀 신품종 "올그린")

  • Heo, Hwa-Young;Park, Hyoung-Ho;Hwang, Jong-Jin;Kim, Hong-Sik;Han, Ouk-Kyu;Park, Tae-Il;Seo, Jae-Hwan;Kim, Dea-wook;Kim, Su-Yong;Kim, Si-Ju;Park, Ki-Hun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.625-629
    • /
    • 2009
  • "Olgreen" (Scale cereal L.), a new rye variety was developed by National Institute of Crop Science(NICS), RDA. It was released in 2008 because of its high biomass yield potential and early maturity. It was developed from an open pollination within 10 rye varieties or lines including "Chochun" in 1995. The line 'SR95POP-S1-1072-1-2-4' was selected for its early maturity and excellent agronomic appearance, and placed in yield trials for two years from 2004 to 2005. It was designated "Homil 38" and placed in regional yield trials at the four locations around Korea from 2006 to 2008, from which the name "Olgreen" was given. Over three years, "Olgreen" averaged 8.88 ton ha-1 of forage yield (based on dry matter) harvested at late April and superior to other varieties with an increase of 10% more than the check variety "Olhomil", and 9% more than the introduced rye "Koolgrazer". Heading date of "Olgreen" was April 20 which was 3 days earlier than that of "Olhomil". It would be recommended as an early rye variety for forage or green manure in South Korea.

A New Malting Barley Variety, "Daho" with High Yielding and BaYMV Resistance (맥주보리 호위축병저항성 및 다수성 "다호")

  • Hyun, Jong-Nae;Kim, Mi-Jung;Kim, Yang-Kil;Lee, Mi-Ja;Choi, Jae-Sung;Kim, Hyun-Tae;Han, Sang-Ik;Ko, Jong-Min;Lim, Sea-Gyu;Park, Jong-Chul;Kim, Jung-Gon;Suh, Sae-Jung;Kim, Dae-Ho;Kang, Sung-Ju;Kim, Sung-Taeg
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.333-337
    • /
    • 2009
  • A new malting barley variety, "Daho", was developed from the cross between "Milyang85 and Suwon335" at the Department of Rice and Winter Cereal Crop (DRWCC) NICS, in 2007. An elite line, YMB2064-B-8-2-4-1-1, was selected in 2004 and designated as "Milyang134". It showed good agronomic performance in the regional adaptation yield trials (RYT) from 2005 to 2007 and was released with the name of "Daho", having high yielding and BaYMV resistance. The average heading and maturing dates of "Daho" were April 19 and May 27, which were 2 days later and 1 day earlier than those of "Jinyang", leading variety, at the regional adaptation yield trials (RYT), respectively. "Daho" had longer culm length (84 cm), more spikes per $m^2$ (915) and higher 1,000 grain weight (39.2 g) than those of "Jinyang" in paddy field condition. "Daho" was showed resistance to BaYMV at the regions of Naju, Jinju, and Milyang but moderately resistance at Iksan. However, the response of "Daho" to other environmental stresses was similar to "Jinyang". The yields of "Daho" at upland and paddy fields were about 5.20 MT/ha, 4.81 MT/ha, respectively, which is about 38%, 25% higher than those of "Jinyang" in the regional adaptation yield trials (RYT), respectively. It has higher grain assortment, germination capacity, water sensitivity and Kolback index but lower malt extract, diastatic power and filtration speed than those of "Jinyang".

A New High-Yielding Malting Barley Cultivar "Oreum" with High Yielding and BaYMV Resistance (호위축병저항성 다수성 맥주보리 "오름")

  • Hyun, Jong-Nae;Kim, Mi-Jung;Kim, Yang-Kil;Lee, Mi-Ja;Choi, Jae-Sung;Kim, Hyun-Tae;Han, Sang-Ik;Ko, Jong-Min;Lim, Sea-Gyu;Park, Jong-Chul;Kim, Jung-Gon;Suh, Sae-Jung;Kim, Dae-Ho;Kang, Sung-Ju;Kim, Sung-Taeg
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.328-332
    • /
    • 2009
  • A new malting barley variety, "Oreum", was developed from the a cross between 'Kinuyutaka' and 'Samdobori' at the Honam Agricultural Research Institute (HARI) in 2006. An elite line, YMB2077-2B-24-1-2, was selected in 2003 and designated as 'Milyang132'. It showed good agronomic performance in the regional adaptation yield trials (RYT) from 2004 to 2006, and was released with the name of "Oreum" having high yielding and BaYMV resistance. The average heading and maturing dates of "Oreum" were April 18 and May 24, which were 2 days later than 'Jinyang', a leading variety, at RYT. "Oreum" had longer culm length (75 cm), more spikes per $m^2$ (990), and lighter 1,000 grain weight (35.2 g) than those of 'Jinyang' in paddy field conditions. It was showed resistance to BaYMV at the regions of Naju, Jinju and Milyang but moderate resistance at Iksan. However, the response to other environmental stresses of was similar to 'Jinyang' The yield potential of "Oreum" was about 5.43 MT/ha, 4.93 MT/ha in upland and paddy fields which was about 80%, 35% higher than Jinyang in the regional adaptation yield trials (RYT), respectively. It has good malting quality including high grain assortment, germination capacity ratio, water sensitivity and high the malt production and the extract and short filtration speed than those of 'Jinyang'.

The study of stock assessment and management implications of the Manila clam, Ruditapes philippinarum in Taehwa river of Ulsan (울산 태화강 바지락의 자원평가 및 관리방안에 관한 연구)

  • Choi, Young-Min;Yoon, Sang-Chul;Lee, Sung-Il;Kim, Jong-Bin;Yang, Jae-Hyeong;Yoon, Byoung-Sun;Park, Jeong-Ho
    • The Korean Journal of Malacology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2011
  • The manila clam (Ruditapes philippinarum) is mainly distributed in the coastal area which consist of mud, sand and gravel, but they rarely live on the upper and down reaches of river. For a long time the manila clam has been inhabited in Taehwa river which has been exploited as a traditional earning resources and has become as a major object by neighborhood fishermen. This study was undertaken to evaluate stock assessment and to build management implications with the ecological parameters in Taehwa river from June 2009 to June 2010. The maximum age of manila clam was determined to 6 years old from observing ring radius of shell, the length and weight relationship was TW = $0.0002SL^{3.063}$ ($R^2$ = 0.925). K and $L_{\infty}$ were respectively estimated 46.64 mm and 0.341/year by von Bertalanffy growth. The instantaneous total mortality was estimated to be 1.171/year and the age at first capture was 1.37 years by the Pauly's method using shell length composition. The current total biomass of manila clam was calculated 1,483 mt over study area $1.46\;km^2$ by swept area method. ABC (Acceptable Biological Catch) estimates of manila clam showed 512 mt with using $F_{0.1}$. It's desirable to determine the optimum harvesting time as after main spawning season, as well as it's required to manage fisheries resources considering capture age and biomass through adjusting a first age at capture.

Study on Conservation and Habitat Restoration Based on Ecological Diagnosis for Cymbidium kanran Makino in Jeju Island, Korea (한국 제주도 한란의 생태 진단에 기초한 보전 및 서식지 복원에 관한 연구)

  • Jung, Ji-Young;Shin, Jae-Kwon;Kim, Han-Gyeoul;Byun, Jun-Gi;Pi, Jung-Hun;Koo, Bon-Yeol;Park, Jeong-Geun;Suh, Gang-Uk;Lee, Cheul-Ho;Son, Sung-Won;Kim, Jun-Soo;Cho, Hyun-Je;Bae, Kwan-Ho;Oh, Seung-Hwan;Kim, Hyun-Cheol;Kang, Seung-Tae;Cho, Yong-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.11-21
    • /
    • 2016
  • Cymbidium kanran Makino is being threatened in its own habitats due illegal collecting and habitat changes by vegetation growth along historical landuse change. In this study, we established habitat restoration model for conservation of C. kanran based on ecological diagnosis. Through exploration to Jeju Island in 2014 and 2015, we identified 27 unknown habitats of C. kanran and in there, abiotic variables and vegetation structure and composition were quantified. Altitudinal distribution of C. kanran was between 200 m~700 m a.s.l. and compared to distribution in 2004, Area of Occupation (AOO) decreased at 82%. Specific habitat affinity was not observed by evenly found in mountain slope and valley and summergreen and evergreen broadleaved forests, but likely more abundant in valley habitats with higher soil and ambient moisture. Total of 96 individual of C. kanran was observed with an average density of $942.6individuals\;ha^{-1}$. The plants showed relatively short leaf length (average=$10.7cm{\pm}1.1cm$) and small number of pseudo bulbs ($1.2{\pm}0.2$). Flowering and fruiting individuals were not observed in field. C. kanran was classified into endangered plant species as CR (Critically Endangered) category by IUCN criteria. Phenotypic plasticity of C. kanran was likely support to sustain in more shaded habitat environment and recent habatat changes to closed canopy and low light availability may exhibit negatively effects to C. kanran's life history. Restoring C. kanran habitat should create open environment as grassland and low woody species density.

Development of a Distribution Prediction Model by Evaluating Environmental Suitability of the Aconitum austrokoreense Koidz. Habitat (세뿔투구꽃의 서식지 환경 적합성 평가를 통한 분포 예측 모형 개발)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.504-515
    • /
    • 2021
  • To examine the relationship between environmental factors influencing the habitat of Aconitum austrokoreense Koidz., this study employed the MexEnt model to evaluate 21 environmental factors. Fourteen environmental factors having an AUC of at least 0.6 were found to be the age of stand, growing stock, altitude, topography, topographic wetness index, solar radiation, soil texture, mean temperature in January, mean temperature in April, mean annual temperature, mean rainfall in January, mean rainfall in August, and mean annual rainfall. Based on the response curves of the 14 descriptive factors, Aconitum austrokoreense Koidz. on the Baekun Mountain were deemed more suitable for sites at an altitude of 600 m or lower, and habitats were not significantly affected by the inclination angle. The preferred conditions were high stand density, sites close to valleys, and distribution in the northwestern direction. Under the five-age class system, the species were more likely to be observed for lower classes. The preferred solar radiation in this study was 1.2 MJ/m2. The species were less likely to be observed when the topographic wetness index fell below the reference value of 4.5, and were more likely observed above 7.5 (reference of threshold). Soil analysis showed that Aconitum austrokoreense Koidz. was more likely to thrive in sandy loam than clay. Suitable conditions were a mean January temperature of - 4.4℃ to -2.5℃, mean April temperature of 8.8℃-10.0℃, and mean annual temperature of 9.6℃-11.0℃. Aconitum austrokoreense Koidz. was first observed in sites with a mean annual rainfall of 1,670- 1,720 mm, and a mean August rainfall of at least 350 mm. Therefore, sites with increasing rainfall of up to 390 mm were preferred. The area of potential habitats having distributive significance of 75% or higher was 202 ha, or 1.8% of the area covered in this study.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.