• Title/Summary/Keyword: mFasL

Search Result 196, Processing Time 0.023 seconds

Effects of Rosa multiflora root extract on adipogenesis and lipogenesis in 3T3-L1 adipocytes and SD rat models

  • Kyoung Kon Kim;Hye Rim Lee;Sun Min Jang;Tae Woo Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.2
    • /
    • pp.180-193
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity is a major cause of metabolic disorders; to prevent obesity, research is ongoing to develop natural and safe ingredients with few adverse effects. In this study, we determined the anti-obesity effects of Rosa multiflora root extract (KWFD-H01) in 3T3-L1 adipocytes and Sprague-Dawley (SD) rats. MATERIALS/METHODS: The anti-obesity effects of KWFD-H01in 3T3-L1 adipocytes and SD rats were examined using various assays, including Oil Red O staining, gene expression analyses, protein expression analyses, and blood biochemical analyses. RESULTS: KWFD-H01 reduced intracellular lipid accumulation and inhibited the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBPα), sterol regulatory element-binding transcription factor 1 (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in 3T3-L1 cells. KWFD-H01 also reduced body weight, weight gain, and the levels of triglycerides, total and LDL-cholesterol, glucose, and leptin, while increasing high-density lipoprotein-cholesterol and adiponectin in SD rats. PPARγ, C/EBPα, SREBP-1c, ACC, and FAS protein expression was inhibited in the epididymal fat of SD rats. CONCLUSION: Overall, these results confirm the anti-obesity effects of KWFD-H01 in 3T3-L1 adipocytes and SD rats, indicating their potential as baseline data for developing functional health foods or pharmaceuticals to control obesity.

H9 Induces Apoptosis via the Intrinsic Pathway in Non-Small-Cell Lung Cancer A549 Cells

  • Kwon, Sae-Bom;Kim, Min-Je;Sun Young, Ham;Park, Ga Wan;Choi, Kang-Duk;Jung, Seung Hyun;Do-Young, Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.343-352
    • /
    • 2015
  • H9 is an ethanol extract prepared from nine traditional/medicinal herbs. This study was focused on the anticancer effect of H9 in non-small-cell lung cancer cells. The effects of H9 on cell viability, apoptosis, mitochondrial membrane potential (MMP; ${\Delta}\psi_{m}$), and apoptosisrelated protein expression were investigated in A549 human lung cancer cells. In this study, H9-induced apoptosis was confirmed by propidium iodide staining, expression levels of mRNA were determined by reverse transcriptase polymerase chain reaction, protein expression levels were checked by western blot analysis, and MMP (${\Delta}\psi_{m}$) was measured by JC-1 staining. Our results indicated that H9 decreased the viability of A549 cells and induced cell morphological changes in a dose-dependent manner. H9 also altered expression levels of molecules involved in the intrinsic signaling pathway. H9 inhibited Bcl-xL expression, whereas Bax expression was enhanced and cytochrome C was released. Furthermore, H9 treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase; the MMP was collapsed by H9. However, the expression levels of extrinsic pathway molecules such as Fas/FasL, TRAIL/TRAIL-R, DR5, and Fas-associated death receptor were downregulated by H9. These results indicated that H9 inhibited proliferation and induced apoptosis by activating intrinsic pathways but not extrinsic pathways in human lung cancer cells. Our results suggest that H9 can be used as an alternative remedy for human non-small-cell lung cancer.

Inhibitory Effects of Rubus crataegifolius Leaf Water Extract on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes

  • Mee-Kyung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.187-194
    • /
    • 2024
  • In this study, we examined the effects of Rubus crataegifolius leaf on the inhibition of differentiation and adipogenesis of 3T3-L1 preadipocytes to confirm their potential for use as an anti-obesity functional material. Rubus crataegifolius leaves water extracted using hot water were then concentrated for use, with an extract yield of 4.76%. The result of measuring the rate of 3T3-L1 cell survival of Rubus crataegifolius leaf extract (RCLE) showed growth inhibition of 13% at a concentration of 1,000 ㎍/mL. Thus, in this study, experiments were performed using RCLE treatment concentrations up to 500 ㎍/mL. Production of triglycedie in 3T3-L1 cells showed a dose-dependent decrease, and the rate of reduction was 28.7, 40.8, and 51.6% at concentrations of 100, 300, and 500 ㎍/mL, respectively, compared to the control group. In addition, the results confirmed that suppression of lipogenesis was achieved by suppressing the expression of peroxisome proliferator-activated receptor γ (PPAR γ), CCAAT/enhancer-binding protein α (C/EBP α), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and increasing the expression of p-activated protein kinase (p-AMPK). Based on these results, it is believed that Rubus crataegifolius leaf extract can be used in the effort to manage obesity by regulating factors related to adipocyte differentiation and adipogenesis.

Gamakamide C and D as Two New Analogues of Bitter-Tasting Cyclic Peptide with Hydantoin Structure from Oyster Crassostrea gigas

  • Jang, Jun Ho;Park, Taesung;Lee, Jong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.131-135
    • /
    • 2015
  • Two new bitter-tasting cyclic peptides comprising six amino acids, namely gamakamide C and D, were isolated from cultured oysters Crassostrea gigas. Dimethylaminoazobenzene sulfonyl-amino acid analysis detected Val and Leu in gamakamide C and Ile and Leu in gamakamide D. The molecular formula of gamakamide C was determined as $C_{43}H_{60}N_{7}O_8S$ by high-resolution fast atom bombardment mass spectroscopy (HR FAB-MS) ($[M+H]^+m/z822.4200{\Delta}-2.4mmu$), and that of gamakamide D was determined as $C_{43}H_{62}N_7O_8S$ by HR FAB-MS ($[M+H]^+m/z836.4379{\Delta}-2.0mmu$). Comparison of amino acid analyses and fragment ions by MS/MS among gamakamide C, D, and E (known), the structures of gamakamide C and D were confirmed $as-{\small{L}}-Val-{\small{L}}-Met(SO)-{\small{L}}-NMe-Phe-{\small{L}}-Leu-{\small{D}}-Lys-{\small{L}}-Phe-$ and $-{\small{L}}-Ile-{\small{L}}-Met(SO)-{\small{L}}-NMe-Phe-{\small{L}}-Leu-{\small{D}}-Lys-{\small{L}}-Phe-$, respectively.

Anti-obesity Effect of the Flavonoid Rich Fraction from Mulberry Leaf Extract (뽕잎 추출물 기원 Flavonoid Rich Fraction의 항비만효과)

  • Go, Eun Ji;Ryu, Byung Ryeol;Yang, Su Jin;Baek, Jong Suep;Ryu, Su Ji;Kim, Hyun Bok;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.395-411
    • /
    • 2020
  • Background: This study investigated the anti-obesity effect of the flavonoid rich fraction (FRF) and its constituent, rutin obtained from the leaf of Morus alba L., on the lipid accumulation mechanism in 3T3-L1 adipocyte and C57BL/6 mouse models. Methods and Results: In Oil Red O staining, FRF (1,000 ㎍/㎖) treatments showed inhibition rate of 35.39% in lipid accumulation compared to that in the control. AdipoRedTM assay indicated that the triglyceride content in 3T3-L1 adipocytes treated with FRF (1,000 ㎍/㎖) was reduced to 23.22%, and free glycerol content was increased to 106.04% that of the control. FRF and its major constituent, rutin affected mRNA gene expression. Rutin contributed to the inhibition of Sterol regulatory element binding protein-1c (SREBP-1c) gene expression, and inhibited the transcription factors SREBP-1c, peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, the effect of FRF administration on obesity development in C57BL/6 mice fed high-fat diet (HFD) was investigated. FRF suppressed weight gain, and reduced liver triglyceride and leptin secretion. FRF exerted potential anti-inflammatory effects by improving insulin resistance and adiponectin levels, and could thus be used to help counteract obesity. The mRNA expressions of PPAR-γ, FAS, ACC, and CPT-1 were determined in liver tissue. Quantitative real-time PCR analysis was also performed to evaluate the expression of IL-1β, IL-6, and TNF-α in epididymal adipose tissue. Compared to the control group, mice fed the HFD showed the up-regulation in PPAR-γ, FAS, IL-6, and TNF-α genes, and down-regulation in CPT1 gene expression. FRF treatement markedly reduced the expression of PPAR-γ, FAS, IL-6, and TNF-α compared to those in HFD control, whereas increased the expression level of CPT1. Conclusions: These results suggest that the FRF and its major active constituent, rutin, can be used as effective anti-obesity agents.

Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells (A549 인체 폐암세포에서 piceatannol에 의한 apoptosis 유발과 NO 생성의 억제)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.815-822
    • /
    • 2012
  • Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), a natural stilbene, is an analogue of resveratrol. Although recent experimental data have revealed the health benefit potency of piceatannol, the molecular mechanisms underlying the anti-cancer activity have not yet been studied in detail. In the present study, the further possible mechanisms by which piceatannol exerts its pro-apoptotic action in cultured human lung cancer A549 cells were investigated. Exposure of A549 cells to piceatannol resulted in growth inhibition and induction of apoptosis. Apoptosis induction of A549 cells by piceatannol showed correlation with proteolytic activation of caspase-3, -8, and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase, phospholipase C-${\gamma}1$, ${\beta}$-catenin, and Inhibitor caspase-activated DNase. The increase in apoptosis by piceatannol treatment was also associated with an increase of pro-apoptotic Bax expression and decrease of anti-apoptotic Bcl-2 and Bcl-xL expression, and caused down-regulation of the inhibitor of apoptosis protein family members and up-regulation of Fas and Fas legend. In addition, piceatannol treatment markedly inhibited the expression of mRNA and proteins of inducible nitric oxide (NO) synthase, and the levels of NO production were progressively down-regulated by piceatannol treatment in a dose-dependent fashion. The results indicate that piceatannol may have therapeutic potential against human gastric cancer cells.

Consecutive versus concomitant follicle-stimulating hormone and highly purified human menopausal gonadotropin: A milder response but better quality

  • Maghraby, Hassan Ali;Agameya, Abdel Fattah Mohamed;Swelam, Manal Shafik;El Dabah, Nermeen Ahmed;Ahmed, Ola Youssef
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.2
    • /
    • pp.135-141
    • /
    • 2022
  • Objective: This study investigated the impact of two stimulation protocols using highly purified human menopausal gonadotropin (HP-hMG) on the endocrine profile, follicular fluid soluble Fas levels, and outcomes of intracytoplasmic sperm injection (ICSI) cycles. Methods: This prospective clinical trial included 100 normal-responder women undergoing ovarian stimulation for ICSI; 55 patients received concomitant follicle-stimulating hormone (FSH) plus HP-hMG from the start of stimulation, while 45 patients received FSH followed by HP-hMG during mid/late follicular stimulation. The primary outcome was the number of top-quality embryos. The secondary outcomes were the number and percentage of metaphase II (MII) oocytes and the clinical pregnancy rate. Results: The number of MII oocytes was significantly higher in the concomitant protocol (median, 13.0; interquartile range [IQR], 8.5-18.0 vs. 9.0 [8.0-13.0] in the consecutive protocol; p=0.009); however, the percentage of MII oocytes and the fertilization rate were significantly higher in the consecutive protocol (median, 90.91; IQR, 80.0-100.0 vs. 83.33 [75.0-93.8]; p=0.034 and median, 86.67; IQR, 76.9-100.0 vs. 77.78 [66.7-89.9]; p=0.028, respectively). No significant between-group differences were found in top-quality embryos (p=0.693) or the clinical pregnancy rate (65.9% vs. 61.8% in the consecutive vs. concomitant protocol, respectively). The median follicular fluid soluble Fas antigen level was significantly higher in the concomitant protocol (9,731.0 pg/mL; IQR, 6,004.5-10,807.6 vs. 6,350.2 pg/mL; IQR, 4,382.4-9,418.4; p=0.021). Conclusion: Personalized controlled ovarian stimulation using HP-hMG during the late follicular phase led to a significantly lower response, but did not affect the quality of ICSI.

Gamakamide-E, a Strongly Bitter Tasting Cyclic Peptide with a Hydantoin Structure from Cultured Oysters Crassostrea gigas

  • Lee, Jong-Soo;Satake, Masayuki;Horigome, Yoichi;Oshima, Yasukatsu;Yasumoto, Takeshi
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • A new cyclic peptide (six-membered amino acid), gamakamide-E (L-Leu-L-Met (SO)-L-Me-Phe-L-Leu-D-Lys-L-Phe), was isolated as a strongly bitter tasting compound from cultured oysters, Crassostrea gigas. The molecular formula of $C_{43}H_{61}N_7O_8S$ was deduced from high resolution fast atom bombardment mass spectrometry (HR FAB-MS) ($[M+H]^+$ m/z 836.4356 ${\Delta}$= -2.4 mmu). Its unique structure including a hydantoin structure was firstly elucidated by nuclear magnetic resonance (NMR) analysis. Stereochemistries of constituent amino acids were determined by chiral high performanced liquid chromatography analysis of natural and synthesized peptides.

Fractionation and Angiotensin I-converting Enzyme (ACE) Inhibitory Activity of Gelatin Hydrolysates from by-products of Alaska Pollock Surimi

  • Park, Chan-Ho;Kim, Hyung-Jun;Kang, Kyung-Tae;Park, Jae-W.;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.79-85
    • /
    • 2009
  • Gelatin hydrolysates with a high inhibitory activity against angiotensin I-converting enzyme (ACE) were fractionated from Alaska pollock surimi refiner discharge. The ACE-inhibitory activity, expressed as $IC_{50}$ (mg/mL), was highest (0.49 mg/mL) in gelatin hydrolysates formed by sequential 2-hr treatments of Pronase and Flavourzyme. After fractionation through four different membrane filters with molecular weight cut-offs of 3, 5, 10, and 30 kDa, the highest ACE-inhibitory activity (0.21 mg/mL) was observed with the 3-kDa filtrate.

Selection of a L-Lysine-Overproducing Strain of the Red Seaweed Porphyra suborbiculata (Rhodophyta) through Mutation and Analog Enrichment

  • Luyen, Quoc-Hai;Chowdhury, Muhammad Tanvir Hossain;Choi, Jae-Suk;Kang, Ji-Young;Park, Nam-Gyu;Hong, Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.145-150
    • /
    • 2012
  • An improved strain of the red seaweed Porphyra suborbiculata containing an increased amount of the essential amino acid L-lysine was obtained through mutation and analog enrichment. Mutagenesis using a 10% lethal dose of ultraviolet irradiation and an enrichment culture with the L-lysine analog aminoethyl-L-cysteine (AEC) was repeated to select the most productive strain using monospores of P. suborbiculata. The concentrations of AEC required to produce 50 and 100% inhibition of survival were 60 and 115 mM in the parent strain, and 72 and 135 mM in the selected AEC-resistant strain, respectively. The AEC-resistant strain, L130, produced 1.74-fold more lysine compared to its parent strain. Thus, mutagenesis with analog enrichment shows promise for selecting seaweed strains that can overproduce this essential amino acid.