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Abstract
An improved strain of the red seaweed Porphyra suborbiculata containing an increased amount of the essential amino acid l-
lysine was obtained through mutation and analog enrichment. Mutagenesis using a 10% lethal dose of ultraviolet irradiation and 
an enrichment culture with the l-lysine analog aminoethyl-l-cysteine (AEC) was repeated to select the most productive strain us-
ing monospores of P. suborbiculata. The concentrations of AEC required to produce 50 and 100% inhibition of survival were 60 
and 115 mM in the parent strain, and 72 and 135 mM in the selected AEC-resistant strain, respectively. The AEC-resistant strain, 
L130, produced 1.74-fold more lysine compared to its parent strain. Thus, mutagenesis with analog enrichment shows promise for 
selecting seaweed strains that can overproduce this essential amino acid.
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Introduction

The genus Porphyra (Bangiales, Rhodophyta) is one of the 
most important edible seaweeds cultivated commercially in 
Korea, Japan, and China. In 2009, the Korean aquaculture in-
dustry produced 211,000 t (wet weight) from 57,000 ha (Korea 
Fisheries Association, 2010). This seaweed is highly prized 
for its flavor and as a health food rich in proteins, vitamins, 
and minerals. Porphyra also contains various biologically 
active substances that are beneficial to human health (Noda, 
1993). Seventeen free amino acids, including taurine, which 
controls blood cholesterol levels, are abundant in Porphyra 
(Elvevoll et al., 2008). In addition, Porphyra is a source of the 
red pigment R-phycoerythrin, which is used as a fluorescent 
tag for immunofluorescence studies (Kronick, 1986). 

Bilogy and ecology of Porphyra has been studied more 

thoroughly than those of any other genus of red algae (Tseng 
and Sun, 1989; Cole, 1990; Hawkes, 1990). Recently, Porphy-
ra was reported as being suitable as an experimental system 
in modern biological research, similar to Arabidopsis thaliana 
(Saga and Kitade, 2002; Sahoo et al., 2002). 

Until now, Porphyra suborbiculata was not considered to 
have great commercial value as a food source compared to the 
aquacultured strains Porphyra yezoensis and Porphyra tenera. 
However, P. suborbiculata offers a significant advantage to 
farmers because it can be grown from spring to summer, al-
lowing farming in the warm-seawater season rather than just 
the cold-water season (Jin et al., 2000).

As has been demonstrated repeatedly in agricultural crops 
and other types of cultivation, the genetic improvement of a 
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and 14 h of dark at 20°C for 20 days. The monospores were 
then grown to juvenile blades. Healthy juvenile blades were 
selected for use as a parent strain (W1). The parent blades 
started to produce monospores under the same culture condi-
tions. 

Experimental design

For monospore mutation, ultraviolet (UV) radiation was 
used as a mutagenic agent. The UV source was a 254-nm 
wavelength germicidal lamp (30 W) that was placed 20 cm 
above the monospore-containing plates. To measure the lethal 
exposure time for the parent monospores, 500 µL of culture 
media containing approximately 1,000 monospores per well 
in a 24-well plate was exposed to UV light with continuous 
agitation; a sample was removed every 30 s. The irradiated 
monospores were immediately stored in darkness for 1 day to 
avoid photoreactivation (Carlton and Brown, 1981) and then 
grown to juvenile blades over a period of 1 week. Survival rate 
(%) of the irradiated spores compared to nonirradiated spores 
was calculated as the number of regenerated monospores in 
PES. The regenerative ability of plants is more severely af-
fected by mutagens more so than growth potential (Moustafa 
et al., 1989). Thus, we selected a level of mutagenesis that 
did not significantly inhibit regeneration (30 s of irradiation, 
which yielded almost 90% survival). A sufficient number of 
next-generation monospores was viable at this level. 

To select lysine overproducers, the UV-treated monospores 
were grown in PES that contained the lysine analog S-(2-
aminoethyl)-l-cysteine (thialysine; AEC) as an enrichment 
culture. A total of 1 mL of PES containing ca. 1,000 mono-
spores per well in a 24-well plate was cultured with different 
concentrations of AEC for 1 week, and then the regenerated 
monospores were counted. IC50 (50% inhibitory concentra-
tion) and IC100 (100% inhibitory concentration) were deter-
mined from the dose-response curve. To isolate AEC-resistant 
mutants in the first round, UV-treated monospores were cul-
tured in PES containing 110 mM AEC, which was the mini-
mum lethal concentration (minimum concentration of AEC 
required for 100% inhibition of cell growth; MLC) for parent 
monospores. After 1 week, the AEC-containing medium was 
exchanged with normal PES and the culture was continued 
until the juvenile blades released new monospores. The re-
leased monospores were used in a subsequent round of UV 
treatment-enrichment culture with increased concentrations of 
AEC for 1 week, followed by culture in normal PES. New 
monospores were released repeatedly from juvenile blades 
that survived the previous AEC concentration and were used 
in the following rounds until a juvenile (strain L130) showing 
resistance to the highest concentration of AEC could be found.

Survival and growth rates

Survival rate (%) of the monospores in AEC-containing 

cultured species is generally crucial to maximize yields and to 
obtain useful by-products. However, unlike terrestrial plants, 
improvement techniques for seaweed strains have generally 
been restricted to classic breeding methods, particularly strain 
selection. To date, the most successful method for producing 
new strains of Porphyra is repeated strain selection (Japanese 
Society of Fisheries, 1979), although the approach has many 
disadvantages and limitations. For example, repeated strain 
selection is labor-intensive and usually requires many years 
of rigorous effort. In addition, the existing genetic variability 
in one or more populations of interest may not be sufficient 
for strain selection. Another method for strain improvement is 
somatic hybridization via protoplast fusion (Fujita and Saito, 
1990). Genetic engineering and mutant selection have also 
been suggested as appropriate methods for strain improve-
ment (Brown et al., 1990); however, genetic engineering can  
be applied only to systems in which the genetic fundamentals 
are well developed. In contrast, mutant selection has the ad-
vantage of simplicity; it requires little knowledge of the path-
ways involved in the biosynthesis of the desired product and 
minimal technical manipulation (Rowlands, 1984). Strain im-
provement through mutagenesis has been broadly applied in 
microbial industries; e.g., the yield of penicillin was increased 
from 0.06 to 26 mg mL-1 in a stepwise fashion through the use 
of mutant selection (Queener and Lively, 1986). 

The amino acid composition of Porphyra is rich with tau-
rine, alanine, and glutamic acid, but it has low levels of lysine, 
an essential amino acid that is also deficient in rice (Kagawa, 
1983; Noda, 1993). Thus, lysine is one of the most limiting 
essential amino acids in Porphyra-wrapped rice meals, which 
are popular in Korea and Japan. Lysine is the first limiting 
amino acid for protein synthesis in people consuming a pre-
dominantly cereal-based diet of wheat and rice (Young and 
Pellett, 1994). To enhance the lysine supply, we attempted 
to develop a lysine-overproducing strain of P. suborbiculata, 
which could also be used as an example of strain improve-
ment in a Porphyra species. Although the procedure requires 
repeated mutagenesis and analog-enriched selection, it is sim-
ple and requires no sophisticated equipment for the selection 
of amino acid overproducers. 

Materials and Methods

Monospore culture

Juvenile blades of P. suborbiculata Kjellman were collected 
from a rocky shore at Cheongsapo (35°09′28″ N, 129°11′47″ 
E), on the east coast of Busan, Korea. The fresh blades were 
rinsed, sonicated (60 kHz) twice for 1 min in autoclaved sea-
water, and immersed in 1% betadine with 2% Triton X-100 
for 1 min to eliminate epiphytes. To liberate monospores, the 
blades were cultured in Provasoli’s Enriched Seawater (PES) 
medium (Provasoli, 1968) under 10 h of light (40 μmol m-2 s-1) 
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1 h. A total of 100 mg of sulfosalicylic acid was added to the 
homogenates, which were refrigerated (4°C) for 2 h and then 
centrifuged (15,000 rpm, 4°C, 15 min). The supernatant was 
collected and evaporated in a rotary vacuum evaporator. The 
residue was dissolved in 2 mL of Li-citrate buffer (pH 2.2) and 
filtered prior to measurement through a filter membrane (0.2 
μm). Amino acids were analyzed using a Biochrom 20 amino 
acid analyzer (Cambridge, UK).

Results

Approximately 40 monospores (average size, 15 µm) were 
produced from an average juvenile blade that was 100 μm in 
length. Monospores and juvenile blades were separated by 
filtering through a 20-µm mesh nylon membrane. The condi-
tions for mutagenesis were determined by UV irradiation over 
various time periods with specimens located 20 cm from a 
30-W UV lamp. After irradiation, the monospore survival rate 
was determined (Fig. 1). Irradiation for 30 s yielded almost 
90% survival. Only 10% of the monospores were destroyed 
by UV irradiation under these conditions; the other 90% were 
mutated or undamaged. All monospores died after 4 min of 
irradiation. Thus, we decided to use the conditions that pro-
duced a 90% survival rate (30 s of irradiation) for mutagen-
esis.

Resistance of the parent monospores to AEC was deter-
mined from a dose-response curve (Fig. 2). IC50 was approxi-
mately 60 mM and IC100 was 115 mM. Thus, the selection of 
AEC-resistant mutants after UV treatment commenced with 
a 115 mM AEC enrichment culture. After culturing the 30-s 
UV-irradiated monospores in 115 mM AEC for 1 week, the 
surviving monospores (2nd generation) were placed in fresh 

PES was calculated as a relative rate: (A/N) × 100, where 
A = the number of blades that germinated after culture in 
AEC-containing PES for 1 week and normal PES, and N = 
the number of blades after culturing in normal PES. Juvenile 
blades were grown in a temperature-controlled incubator un-
der light at 40 μmol m-2 s-1 and 20°C. The cells of the blades 
were counted under a microscope with a hemocytometer. The 
specific growth rate (λ) of the blades was calculated as cell 
growth against culture time: logN - logN0 = λ(T - T0)/2.303, 
where N = the number of cells on day T and N0 = the number 
of cells on day T0.

Analysis of gross biochemical composition

Biomass dry weight was measured after washing with 0.5 
M ammonium bicarbonate (pH 7.5) and drying at 95°C for 1 
day (Zhu and Lee, 1997). Dried samples were ashed by heat-
ing for 5 h in an electric oven at 540°C (Association of Of-
ficial Analytical Chemists, 2005). Total carbohydrate content 
was determined by the phenol-sulfuric acid method (Kochert, 
1978) with glucose as the standard. Total lipids were extracted 
by hexane and isopropanol (3:2) as the solvent (Radin, 1981) 
and quantified gravimetrically. The amount of soluble pro-
tein in the cells was estimated by the method of Lowry et al. 
(1951) after heating the cell suspension at 100°C in 1 N NaOH 
for 2 h to achieve complete protein solubilization. Bovine se-
rum albumin was used as the standard when determining the 
protein content.

Measurement of free amino acids

Dried samples (100 mg) of the blades were suspended in 5 
mL of H2O in a hydrolysis tube at 60°C on a heating block for 
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Fig. 1. Lethal time for parent monospores after UV irradiation using a 
germicidal lamp. A 30-W UV germicidal lamp was placed 20 cm above 
the monospores. The survival rate (%) of the irradiated spores against 
non-irradiated spores was calculated as the number of monospores 
regenerated in Provasoli’s enriched seawater. The data are expressed as 
the mean ± SE (n ≥ 3).
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Fig. 2.  Dose-response curve of Porphyra suborbiculata monospores 
with the lysine analog aminoethyl-L-cysteine. Monospores of the parent 
strain (closed circles) and AEC-resistant strain L130 (open circles) were 
cultured in Provasoli’s enriched seawater (PES) containing different 
concentrations of AEC for one week and the regenerated monospores 
counted. The survival rate (%) was calculated against controls containing 
no AEC in PES. All data are expressed as the mean ± SE (n ≥ 3).
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the early growth phase between days 6 and 7, were also ap-
proximately the same at 0.42 cm per day (Table 1). In terms 
of gross biochemical composition, no significant differences 
were observed between W1 and L130 in total carbohydrate, 
lipid, protein, or ash content (Table 1). Free amino acid com-
position was also compared between the parent and AEC-
resistant strains. L130 produced 174% more free lysine than 
strain W1 (Table 2). Strain L130 also produced 180% more 
phenylalanine compared to the parent strain, but it produced 
less leucine and serine. Alanine and taurine were dominant in 
strain L130 and their levels were comparable to those of the 
parent strain.

PES without AEC for germination, growth to juvenile blades, 
and monospore production. These new monospores were mu-
tated again by exposure to UV irradiation for 30 s and then 
cultured in PES containing 120 mM AEC. After 1 week of 
treatment, the surviving monospores (3rd generation) were 
placed in fresh PES to regenerate blades and monospores. 
These monospores were mutated in the same way and cultured 
in PES containing 125 mM AEC. After 1 week, the surviving 
monospores (4th generation) were placed in fresh PES to re-
generate blades and monospores. Again, the new monospores 
were mutated and cultured in PES containing 130 mM AEC 
for 1 week. The surviving monospores (5th generation) were 
placed in fresh PES, and one of the rapidly growing blades 
was selected. The selected juvenile blade was labeled strain 
L130. Monospores obtained from the 5th generation were mu-
tated and cultured in PES containing 135 mM AEC. No mono-
spores survived at this AEC concentration. The resistance of 
the L130 monospores to AEC was determined from the dose-
response curve (Fig. 2); IC50 and IC100 had increased to 72 and 
135 mM, respectively.

The parent strain W1 and the AEC-resistant strain L130 had 
nearly the same spore shape (approximately 15 µm in diam-
eter) and blade shape (Fig. 3). The specific growth rates of 
juvenile blades from strains W1 and L130, measured during 

Table 1. Specific growth rate and gross biochemical composition of 
juvenile blades of the parent strain (W1) and AEC-resistant strain (L130) of 
Porphyra suborbiculata*

Parent strain 
W1

AEC-resistant strain 
L130

Specific growth rate 
  (1/day)

0.423 ± 0.05 0.420 ± 0.02

Total carbohydrate (%) 40.5 39.7
Lipid (%)   1.3   1.3
Protein (%) 38.2 39.7
Ash (%) 14.5 14.8
*The specific growth rate (λ) was calculated as the cell number increase 
per culture day as the mean ± SE (n ≥ 3). The values for gross biochemical 
composition are expressed on a dry weight basis (%).

Table 2. Composition of free amino acids in the parent strain (W1) and 
AEC-resistant strain (L130) of Porphyra suborbiculata on a dry weight basis

Amino acid
Amount (µg/100 mg) Relative 

enhancement 
(%)Strain W1 Strain L130

Alanine 958 962 100
Arginine 94 111 118
Aspartic acid 138 122 88
Cysteine ND ND ND
Glutamic acid 327 383 117
Glycine 160 200 125
Histidine ND ND ND
Isoleucine 25 26 102
Leucine 185 137 74
Lysine 38 66 174
Methionine ND ND ND
Ornithine 62 65 105
Phenylalanine 40 72 180
Proline ND ND ND
Serine 189 147 78
Taurine 1,550 1,360 88
Threonine 75 94 126
Tryptophan ND ND ND
Tyrosine 8.7 7.7 88
Valine 50 68 136
Total 3,899.7 3,820.7
ND, not detectable amount.

Fig. 3. Surface view of the parent strain W1 (A) and AEC-resistant strain L130 (B) of Porphyra suborbiculata after 20 day culture in Provasoli’s enriched 
seawater. Scale bars: A, B = 60 µm.
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obtainable by sequentially conducting a range of mutations, 
i.e., by repeated mutagenesis and enrichment selection against 
their amino acid analogs.
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