• Title/Summary/Keyword: mDNA

Search Result 3,755, Processing Time 0.027 seconds

Complex Detection Between Transcription Regulator and Promoter DNA by UV Spectroscopic Method

  • Lee, Kyungmin;Gang, Jongback
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • UV spectrophotometer was used to detect protein-DNA complex from DNA melting profile under constant temperature increase. Melting temperature (Tm) was $43^{\circ}C$ in copA duplex DNA alone. In the presence of Proteus mirabilis transcription regulator protein (PMTR) protein at 0.2 and 0.4 ${\mu}M$, Tm's were $45{\pm}0.5$ and $47.6{\pm}0.6^{\circ}C$, respectively. According to fluorescence polarization and gel shift assay. PMTR:copA complex was detected by the retarded migration on gel and the dissociation constant ($K_d$) was $(9.2{\pm}2.8){\times}10^{-9}M$.

Structural, Electrochemical, DNA Binding and Cleavage Properties of Nickel(II) Complex [Ni(H2biim)2(H2O)2]2+ of 2,2'-Biimidazole

  • Jayamani, Arumugam;Thamilarasan, Vijayan;Ganesan, Venketasan;Sengottuvelan, Nallathambi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3695-3702
    • /
    • 2013
  • A nickel(II) complex $[Ni(H_2biim)_2(H_2O)_2](ClO_4)_2{\cdot}H_2O$ (1) of biimidazole ligand has been synthesized and characterized (Where $H_2biim$ = 2,2'-biimidazole). The single crystal X-ray diffraction of the complex shows a dimeric structure with six coordinated psudo-octahedral geometry. The cyclic voltammograms of complex exhibited one quasireversible reduction wave ($E_{pc}=-0.61V$) and an irreversible oxidation wave ($E_{pa}=1.28V$) in DMF solution. The interaction of the complex with Calf-Thymus DNA (CT-DNA) has been investigated by absorption and fluorescence spectroscopy. The complex is an avid DNA binder with a binding constant value of $1.03{\times}10^5M^{-1}$. The results suggest that the nickel(II) complex bind to CT-DNA via intercalative mode and can quench the fluorescence intensity of EB bind to CT-DNA with $K_{app}$ value of $3.2{\times}10^5M^{-1}$. The complex also shown efficient oxidative cleavage of supercoiled pBR322 DNA in the presence of hydrogen peroxide as oxidizing agent. The DNA cleavage by complex in presence of quenchers; viz. DMSO, KI, $NaN_3$ and EDTA reveals that hydroxyl radical or singlet oxygen mechanism is involved. The complex showed invitro antimicrobial activity against four bacteria and two fungi. The antimicrobial activity was nearer to that of standard drugs and greater than that of the free ligand.

Molecular cloning and characterization of metallothionein cDNA gene in channel catfish (챠넬메기의 metallothionein cDNA 유전자의 cloning 및 그 특성에 관한 연구)

  • Lee, In-Jung;Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.5 no.2
    • /
    • pp.143-152
    • /
    • 1992
  • Metallothionein is an essential and common protein to regulate the intracellular concentration of heavy metals, which exist in most organisms from bacteria to vertebrates. Although the detailed function of metallothianein has not been fully identified until yet, it may be involoved in the cellular protection against the heavy metal toxicity and in the global regulation of several other genes and the expression of metalloproteins. We have cloned the full cDNA clone of metallothionein gene in Channel Catfish by Reverse Transcriptase-Polymerase Chain Reaction(RT-PCR) starting from poly(A)-containing mRNAs. All PCR fragments have been subcloned into EcoRV site of pBluescript SK+ and dT-tailed at Smal site of pUC19, then PCR products are recovered by the double digestion of recombinant plasmids wiht EcoRI and HindIII, which are adjacent to EcoRV site in multicloning sites or by rapid PCR screening. The nucleotide sequence analysis of pMT150(one of the PCR clones) showed high homology with several other piscine metallothionein cDNA genes.

  • PDF

디클로벤지딘에 폭로된 흰쥐의 간장세포와 방광 상피세포에 형성된 DNA adducts의 $^{32}P-postlabeling$과 GC/MS-SIM에 의한 분석

  • 이진헌;신호상;장미선
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.49-51
    • /
    • 2002
  • To identify and evaluate the dichlorobenzidine(DCB)-DNA adducts in liver cell and bladder epithelial cells by $^{32}$ P-postlabeling and GC/MS-SIM, we orally exposed the dichlorobenzidine (20mg/kh body wt.,/day)to male sprague-dawley rats for 14 days. Two kinds of DCB-DNA adduct were found at the same site of thin layer chromatogram of $^{32}$ P-postlabeling method in liver cells and bladder epithelial cells. In liver cells, relative adduct labeling(RAL) $\times$ 10$^{12}$ of DCB-DNA adduct A1 were 34.1$\pm$3.71 and 69.9$\pm$5.02, that of adduct A2 were 74.1$\pm$10.1 and 105.1$\pm$10.1 on 10 and 14 days after treatment, respectively. And in bladder epithelia cells, RAL $\times$ 10$^{12}$ of DCB-DNA adduct A1 were 5.92$\pm$1.60 and 15.9$\pm$1.31, that of adduct A2 were 9,81$\pm$2.81 and 22.8$\pm$1.79 on 10 and 14 days after treatment, respectively. DCB metabolites formed DNA adducts were monoacetyl-dichlorobenzidine(acDCB) and diacety1-dichlorobenzidine(di-acDCB), which was identify by gas chromatography/mass spectrometry-scan ionization mode(GC/MS-SIM), along with hydrolysis, extraction and TFA(trifluoroacetyl anhyride) derivatization with DCB-DNA adducts isolated from live cells and bladder epithelial cells. The base peak of acDCB were 252 and 294 m/z, and that of di-acDCB were 252, 294 and 336 m/z. In conclusion, the exposed DCB formed two kinds of DCB-DNA adduct, the proximate materials of that were acDCB and di-acDCB in liver and bladder epithlial cells. And the above GC/MS-SIM method was found the DCB-DNA adducts could be monitoring by gas chromatography.

  • PDF

Genealogical Stratification by Genetic Distance and DNA Haplotrees (DNA 해프로트리와 유전적거리에 의한 가계족보의 계층화)

  • Ryu, Kwang Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.65-70
    • /
    • 2020
  • This paper describes hierarchically stratifying and analyzing haplotrees of haplogroups from haplotypes on the Y and X chromosomes of human cells for genetic and Korean traditional and genealogical trees. The specific region is Chungcheong province, and the Y-DNA of the paternal lines has high frequency of O3a∗ and O2b∗ in the O group, and the mtDNA of the maternal line has a relatively high frequency of D∗ and M∗ in the L3 group. Each combination of these constructs the family tree of the father lines and mother lines. Genetic distances using Nei's standard genetic distance, are very close relatives of less than 0.1 and close relatives of 0.1 to 0.8. Provided, the distance is more than 1.0, it is difficult to estimate relatives. STR has the identified kinship, and SNP has the personal genetic identification. A scientific stratification of the Korean genealogical tree is created by the three factors.

벼로부터 chloroplast small heat shock protein cDNA의 cloning 및 characterization

  • 이병현;원성혜;이효신;김기용;김미혜;정동민;조진기
    • Proceedings of the Korean Society of Grassland Science Conference
    • /
    • 1999.06a
    • /
    • pp.71.2-72
    • /
    • 1999
  • 고등식물에 있어서 엽록체에 존재하는 저 분자량 heat shock protein (smHSP)은 식물의 내열성 획득에 있어서 필수유전자임이 mutant를 이용한 유전학적인 연구에 의해 보고된 바 있다. 고온내성이 강한 작물인 벼로부터 엽록체 smHSP cDNA를 분리하고자 벼의 잎에서 분리한 mRNA로 작성한 cDNA library로부터 screening하였다. 선발된 smHSP cDNA는 1,026 bp의 염기로 구성되어 있었으며, 239개의 아미노산으로 구성되는 예상분자량 26.6 kDa의 단백질을 code하고 있었다. 또한 다른 식물로부터(중략)

  • PDF

Phytoestrogen and Estrogen Regulation of Antioxdative Potential, and Cell Cycle Regulatory Protein and Constitutive Cycloxygenase-2 Expression

  • Shin, Jang-In;Park, Ock-Jin
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.160-160
    • /
    • 2003
  • Antioxidative potentials of estrogen and genistein were compared by measuring the degree of protection against plasmid DNA strand breakage induced by peroxyl free radicals using the DNA strand scission assay with pBR322 DNA. Genistein decreased DNA strand breakage by AAPH radical treatment at the all of three concentrations tested (0.5, 1.0, 1.5 $\mu\textrm{g}$/$m\ell$) with the range of 89.5% to 99.6%.(omitted)

  • PDF

Electroporation Conditions for DNA Transfer into Somatic Embryogenic Cells of Zoysia japonica (들잔디 체세포 배발생 세포로의 DNA 전입을 위한 Electroporation 조건 구명)

  • 박건환;안병준
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 1998
  • We have reported previously that intact embryogenic cells can be used instead of protoplasts for electroporation-mediated transformation of zoysiagrass and rice. In this study, conditions of the tissue electroporation were examined to optimize the procedures. Embryogenic cell suspensions were established in liquid MS medium containing 2 mg/L of 2,4-D with embryogenic calluses induced from mature embryos of Z. japonica. The suspension-cultured cell clumps were electroporated with 35S-gusA expression vector DNA, and degrees of DNA introduction into the cells were determined by histological expression rates of the gusA marker gene. DNA transfer into the cell clumps occurred in wide range of voltage (100-400 V) and capacitance (10-1980 $\mu\textrm{F}$), but more in the ranges of 200-300 V and 330-800 $\mu\textrm{F}$ DNA concentrations higher than 6 $\mu\textrm{g}$/mL were adequate for GUS expression of the electroporated cells. DNA transfers were confirmed in all three embryogenic cell lines but only in one out of eleven non-embryogenic lines. Positive GUS expressions occurred with DNAs added even 20-40 h after pulse treatments. As a promoter of gusA, Act1 and Ubi1 were effective 7 and 5 times than 35S respectively in number of GUS expression units on electroporated cell clumps. Embryogenic cell clumps survived and regenerated into plantlets after pulse treatments of wide range of conditions.

  • PDF

Effect of the Treadmill Exercise and the Intake of DNA and Crude Catechin (from Puerariae thunbergiana Roots) on the Body Fat Composition and the Antioxidant Activity in Rats (Treadmill 운동과 DNA 및 칡 Catechin 섭취가 흰쥐 생체내 지방조성과 항산화 활성에 미치는 영향)

  • 이치호;조진국;이은정;손영희;남혜영;최일신
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • Rats(Sprague-Dawley) were randomly assigned to the following four groups, control, exercise only, exercise and the intake of DNA, exercise, and the intake of DNA plus crude catechin. 0.4% of DNA from salmon egg and 0.1% crude catechins from Puerariae thunbergiana roots were fed to the rats. The exercise group was exercised in a treadmill at 20 m/min speed for 6 wks. Body weight and body fat weight of 4 groups were investigated, and the body fat composition and antioxidant activity were evaluated by measuring the weight of organs and biochemical test. After 6 wks, body weight did not show any significant differences among those 4 groups, but body fat weight in exercised groups was significantly decreased. The weight of liver, epididymal adipose tissue(E.A.T) and perirenal adipose tissue(P.A.T) were significantly decreased in groups of exercise only, exercise and the intake of DNA, exercise and the intake of DNA plus crude catechin(p<0.05). Phospholipid, cholesterol and triglyceride levels of serum were decreased by exercise, but HDL-cholesterol level of serum was significantly increased(p<0.05). GOT, GPT and glucose levels in serum were slightly decreased by crude catechin, but serum NEFA levels were significantly increased by crude catechin(p<0.05). Results indicated that excercise with the intake of crude catechin would be helpful for the functional development of the compositions in blood lipid.

Genomic DNA Methylation Status and Plasma Homocysteine in Choline- and Folate-Deficient Rats (콜린과 엽산 결핍이 흰쥐의 Genomic DNA 메틸화와 혈장 호모시스테인에 미치는 영향)

  • Mun, Ju-Ae;Min, Hye-Sun
    • Journal of Nutrition and Health
    • /
    • v.40 no.1
    • /
    • pp.14-23
    • /
    • 2007
  • Elevated plasma homocysteine (Hcy) is a risk factor for cognitive dysfunction and Alzheimer disease, although the mechanism is still unknown. Both folate and betaine, a choline metabolite, play essential roles in the remethylation of Hcy to methionine. Choline deficiency may be associated with low folate status and high plasma Hcy. Alterations in DNA methylation also have established critical roles for methylation in development of the nervous system. This study was undertaken to assess the effect of choline and folate deficiency on Hcy metabolism and genomic DNA methylation status of the liver and brain. Groups of adult male Sprague Dawley rats were fed on a control, choline-deficient (CD), folate-deficient (FD) or choline/folate-deficient (CFD) diets for 8 weeks. FD resulted in a significantly lower hepatic folate (23%) (p<0.001) and brain folate (69%) (p<0.05) compared to the control group. However, plasma and brain folate remained unaltered by CD and hepatic folate reduced to 85% of the control by CD (p<0.05). Plasma Hcy was significantly increased by FD $(18.34{\pm}1.62{\mu}M)$ and CFD $(19.35{\pm}3.62{\mu}M)$ compared to the control $(6.29{\pm}0.60{\mu}M)$ (p<0.001), but remained unaltered by CD. FD depressed S-adenosylmethionine (SAM) by 59% (p<0.001) and elevated S-adenosylhomocysteine (SAM) by 47% in liver compared to the control group (p<0.001). In contrast, brain SAM levels remained unaltered in CD, FD and CFD rats. Genomic DNA methylation status was reduced by FD in liver (p<0.05) Genomic DNA hypomethylation was also observed in brain by CD, FD and CFD although it was not significantly different from the control group. Genomic DNA methylation status was correlated with folate stores in liver (r=-0.397, p<0.05) and brain (r = -0.390, p<0.05), respectively. In conclusion, our data demonsoated that genomic DNA methylation and SAM level were reduced by folate deficiency in liver, but not in brain, and correlated with folate concentration in the tissue. The fact that folate deficiency had differential effects on SAM, SAH and genomic DNA methylation in liver and brain suggests that the Hcy metabolism and DNA methylation are regulated in tissue-specific ways.