Many aspects of e-러닝 and m-러닝 have been conducted in language learning settings while few studies have examined learners'psychological attitudes in both Internet-based languages learning environment. Althoughe-Learning and m-Learningin the content of language learningshares many common aspects, the study that particularly examinesEnglish learners' psychological attitudes from both learning environments has not been conducted. Thus, the purpose of this study is to investigate group difference between e-러닝 and m-러닝 in terms of characteristics of both learning environments, including Contextual Offer, Interactivity, Enjoyment, Usefulness, Easiness, Variety, Connectivity, Satisfaction, and Learning Performance. Results showed that even if there was little difference within and among groups in English learners' feelings, learners have different attitude on Enjoyment, Easiness, and Connectivity.
본 연구는 모바일러닝의 효과성을 높이기 위해 고려해야 할 지침을 얻고자, 모바일러닝 환경에서 학습성과를 예측하는 요인으로 모바일러닝 효능감, 편재성, 유용성, 용이성을 선정하고 이들의 예측력을 규명하였다. 이를 위해 2012학년도 9월에서 10월초까지 경남 지역에 소재한 A여자 고등학교 2학년 학생 144명을 대상으로 약 5주동안 모바일기기를 활용하여 모바일러닝을 진행하였다. 수업 종료 후 학습자의 설문을 수거하여 상관분석 및 회귀분석으로 데이터를 분석하였다. 연구결과, 모바일러닝 효능감, 유용성은 만족도에 유의미한 영향을 미치고, 유용성, 편재성은 인지된 성취도에 유의미한 영향을 미치는 것으로 확인되었다. 즉, 모바일러닝 활용 측면의 편재성, 용이성 등의 기기자체의 특성 보다는 모바일러닝에 대해 본인이 느끼는 긍정적 태도나, 유용하다고 느끼는 정도가 모바일러닝의 만족도를 예측하는 요인으로 규명된 것이다. 반면 편재성이 인지된 성취도를 유의미하게 예측하는 것으로 나타났는데, 이는 모바일 특성상 시간과 장소에 관계없이 필요한 정보를 이용할 수 있고 자신에게 적합한 서비스나 정보를 제공받을 수 있으므로, 학습자가 모바일학습 환경에서 더욱 효율적인 학습이 가능했기 때문이라고 생각된다. 유용성이 만족도와 인지된 성취도 모두를 유의하게 예측한 것은, 학습자에게 유용한 모바일러닝을 제공하고 또한 모바일러닝에 대해 긍정적인 태도를 함양할 수 있도록 하는 전략이 필요하다는 것을 함의한다.
정보통신 분야는 물론, 문화, 교육 등 생활 속 모든 분야에서 유비쿼터스라는 수식어가 따라다니고 있는 것을 많이 볼 수 있다. 관련 전문가들은 2010년경에는 유비쿼터스가 우리 생활에서 대중화가 될 것이며 이에 따른 부가가치 규모도 80조원에 이를 것으로 전망하고 있다. 교육 분야도 아날로그 환경 하에서 주변 환경 변화에 더디게 반응해 왔던 과거와 달리 최근 조금은 걱정스러울 정도로 IT의 신기술에 발 빠르게 적응하면서 e러닝, T러닝, M러닝, U러닝 등의 새로운 신조어들이 생겨나고 있다. 이에 진정 살아 있는 e러닝의 최종 모습이라고 불려지고 있는 유비쿼터스 학습(U러닝)에 대해 살펴보고, U러닝이 성공하기 위해서는 어떠한 요소들이 필요한가에 대해 살펴봤다.
효율적인 물관리를 위한 댐 유입량 대한 연구는 필수적이다. 본 연구에서는 다양한 머신러닝 알고리즘을 통해 40년동안의 기상 및 댐 유입량 데이터를 이용하여 소양강댐 유입량을 예측하였으며, 그 중 고유량과 저유량예측에 적합한 알고리즘을 각각 선정하여 머신러닝 알고리즘을 결합한 CombML을 개발하였다. 의사 결정 트리 (DT), 멀티 레이어 퍼셉트론 (MLP), 랜덤 포레스트(RF), 그래디언트 부스팅 (GB), RNN-LSTM 및 CNN-LSTM 알고리즘이 사용되었으며, 그 중 가장 정확도가 높은 모형과 고유량이 아닌 경우에서 특별히 예측 정확도가 높은 모형을 결합하여 결합 머신러닝 알고리즘 (CombML)을 개발 및 평가하였다. 사용된 알고리즘 중 MLP가 NSE 0.812, RMSE 77.218 m3/s, MAE 29.034 m3/s, R 0.924, R2 0.817로 댐 유입량 예측에서 최상의 결과를 보여주었으며, 댐 유입량이 100 m3/s 이하인 경우 앙상블 모델 (RF, GB) 이 댐 유입 예측에서 MLP보다 더 나은 성능을 보였다. 따라서, 유입량이 100 m3/s 이상 시의 평균 일일 강수량인 16 mm를 기준으로 강수가 16mm 이하인 경우 앙상블 방법 (RF 및 GB)을 사용하고 강수가 16 mm 이상인 경우 MLP를 사용하여 댐 유입을 예측하기 위해 두 가지 복합 머신러닝(CombML) 모델 (RF_MLP 및 GB_MLP)을 개발하였다. 그 결과 RF_MLP에서 NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, R2 0.859, GB_MLP의 경우 NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, R2 0.831로 CombML이 댐 유입을 가장 정확하게 예측하는 것으로 평가되었다. 본 연구를 통해 하천 유황을 고려한 여러 머신러닝 알고리즘의 결합을 통한 유입량 예측 결과, 알고리즘 결합 시 예측 모형의 정확도가 개선되는 것이 확인되었으며, 이는 추후 효율적인 물관리에 이용될 수 있을 것으로 판단된다.
교육이란 사회적 변화를 예측하고 우리 사회가 필요로 하는 인재를 길러내야 할 책무성을 띠고 있으며, 이러한 사회적 변화에 따라 교육은 능동적으로 변해야 한다. 이러한 국내 교육변화에 대한 관심은 지난 1995년 교육과학기술부 교육개혁위원회의 '5 31 교육개혁안'을 통해 구체화된 바 있다. 따라서 본 논문은 교육정보화 정책의 3단계 방향과 교육정보화의 핵심 기술인 이러닝과 유러닝 기술을 검토할 것이다. 또한 이러닝은 콘텐츠 전달 매체에 따라 엠러닝(m-learning), 티러닝(t-learning), 유러닝(u-learning), 알러닝(r-learning), game-based learning 등으로 나눌 수 있다. 본 논문은 이 중 새로운 콘텐츠 전달 방법인 알러닝의 개념을 소개하고 유러닝과의 차이점을 비교하여 검토한다.
본 연구는 최근 모바일 러닝에 대한 요구가 높아지는 상황에서 고등학생들의 모바일 기기와 모바일 러닝에 대하여 현 실태와 인식을 독립변인(성별, 학년별, 계열별)에 따라 비교 분석한 것이다. 연구방법은 설문지를 통한 조사연구였고, 통계는 백분율과 t/F분석을 이용하여 분석하였다. 먼저 모바일 기기와 모바일 학습의 실태에 있어서 독립변인에 따라 차이를 보이는 결과가 있었다. 또한 2010년은 모바일 러닝에 있어서 중요한 기준 연도가 될 수 있으며, 고등학생들은 자투리 시간에 모바일 러닝을 하지는 않는 것으로 나타났다. 모바일 학습방법에 있어서는 아직 앱을 이용하여 다운로드 하는 방식은 아직 보편화되지는 않은 것으로 나타났다. 다음으로 모바일 러닝에 대한 인식도에 있어서는 사용능력 측면에서, 학습 수행력 증진 측면에서, 모바일 기기의 지속적 관심 측면에서 통계적으로 유의미한 차이를 보였다.
머신러닝과 같은 소프트웨어가 일상생활에 매우 큰 영향력을 발휘하고 있는 상황에서, 소프트웨어의 개발비용을 평가하는 비용 모델의 중요성이 지속적으로 증가하고 있다. 비용 모델로서 LOC(Line of Code)와 M/M(Man-Month) 모델은 소프트웨어의 양적인 요소들을 측정하는 비용모델이다. 이와는 달리, FP(Function Point)는 소프트웨어의 기능적 특징들을 평가하는 비용모델로서 소프트웨어의 질적인 요소를 평가한다는 점에서 효과적이다. 그러나 FP는 머신러닝 소프트웨어의 주요한 요소들을 평가하지 않기 때문에 머신러닝 소프트웨어를 평가하는데 한계를 가진다. 본 논문은 확장형 FP(Extended Function Point, ExFP)를 제안한다. 확장형 FP는 머신러닝의 주요 특징인 하이퍼 파라미터와 그것의 최적화에 대한 복잡도를 반영하여 소프트웨어의 기능적 요소를 평가하도록 확장하였기 때문에 머신러닝과 같은 최신 소프트웨어에의 비용 평가에 적합하다. 머신러닝 소프트웨어의 특징을 반영한 평가를 통해 제안된 확장형 FP의 효용성을 보였다.
본 연구는 정보화 시대를 맞게 m-이러닝을 실시하고, 결과를 실시간으로 전송하는 모바일 학습 결과 전송 시스템을 설계 및 구현하였다. 제안된 시스템을 통하여 학부모와 교사의 유동적인 커뮤니케이션을 할 수 있다. 또한 전송결과가 단순하게 학습 결과만 제시하는 것이 아니라 인터넷 학습 문제에 따른 이원 목적 분류표로 연계하여 틀린 문제에 대한 보충 학습 부분을 보호에게 전송한다. 다라서 본 시스템을 통하여 유비쿼터스 환경에서 학부모가 아동에 대한 학습 상태를 정확히 인지할 수 있는 통합적인 m-러닝 솔루션을 제안하였다.
최근 E-러닝 발전과 함께 U-러닝에 대한 관심이 집중되고 있으며 이와 관련된 다양한 관련 표준들이 채택되고 있다. 기존의 E-러닝 관련 기술들이 웹에 기반한 학습을 지향하였다면 U-러닝에서는 다양한 환경에서 학습자가 학습의 맥락을 이어가며 학습을 하는 것으로서 언제, 어디서나, 누구나 학습을 진행하여 생활의 학습화를 지원할 기술을 필요로 한다. 즉, U-러닝에서는 다양한 사용 환경에서 학습이 이루어지므로 사용 환경에 적합한 학습이 이루어져야 하고, 이를 위해 사용 환경 맞춤형 콘텐츠 적응화 기술이 필요하다. 크게 사용 환경 맞춤형 콘텐츠 적응화 기술은 다양한 단말기 정보를 포함한 사용 환경 정보를 표현할 수 있는 기술과 사용자의 사용 환경 정보를 분석하는 기술, 사용 환경에 적합한 콘텐츠를 구성하는 기술로 구성된다. 이에 본 연구에서는 지식서비스 USN 산업원천 기술개발 과제의 세부과제인 'U-러닝 환경 표준 및 표준 명세 개발 및 검증' 과제에서 콘텐츠 적응화를 위해 연구 개발된 사용 환경 정보를 표현하는 U-러닝 프로파일에 대하여 소개한다.
PM10 농도는 시간 및 공간 의존성을 동시에 가지는 시공간 데이터이지만 현실적으로 연속적인 시공간 데이터를 획득하는 것은 쉬운 일이 아니다. 본 연구에서는 위성영상과 대기질 및 기상 관측 센서 데이터를 복합적인 딥러닝 모델에 적용하여 시공간 해상도를 향상시키는 모델을 설계하였다. 설계된 딥러닝 모델은 기상, 토지 이용 등 PM10 농도에 영향을 줄 수 있는 인자를 이용하여 학습하였으며, 대기질 및 기상 관측 데이터만을 이용하여 15분 단위의 30m×30m의 공간해상도를 PM10 영상을 생성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.