• Title/Summary/Keyword: lysyl hydroxylase

Search Result 2, Processing Time 0.018 seconds

Structural Requirements of Minoxidil Analogs for Enhancing Lysyl Hydroxylase Inhibitory Activity (Lysyl Hydroxylase의 저해활성을 증가시키기 위한 Minoxidil 유도체들의 구조적인 요건)

  • Myung, Pyung-Keun;Sung, Nack-Do;Lee, Jae-Heung
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • In order to explore structural features of minoxidil analogs with a view of enhancing lysyl hydroxylase (LH) inhibitory activity, molecular holographic QSAR (HQSAR) and CoMSIA (comparative molecular similarity indices analysis) were performed. The results from the atomic contributions with optimized the HQSAR 6-2 model indicated that, in case of pyrimidine-1-N-oxide substituent, C2 atom of pyrimidine ring and C'3-C'4 bond of 4-piperidinol group showed the highest impact on the inhibitory activity towards LH enzyme. It was also evident from the information of the optimized CoMSIA F5 model that the inhibitory activity mainly depended on the hydrophobic field contribution (36%) and the hydrogen bond (H-bond) field contribution (49.2%) of substrate molecule. Particularly, it is predicted that the functional groups which disfavor H-bond acceptors in large space around the piperidinol group and also the functional groups which favor the H-bond acceptors at C'4 (& C'5) atom in $R_5$ group play a role for increased inhibitory activity. With this in mind, it is likely that a novel candidate having more improved inhibitory activity on hair growth could be designed in the future.

Effect of Vitamin C, Silicon and Iron on Collagen Synthesis and Break-Down Enzyme Expression in the Human Dermal Fibroblast Cell (HS27) (피부 섬유아세포에서 비타민 C, Silicon, 철분 처리가 콜라겐 합성 및 분해 관련 효소의 발현에 미치는 효과 비교)

  • Kim, Jeong-Eun;Lee, Jin-Ah;Kim, Hyun-Ae;Kim, Jung-Min;Cho, Yun-Hi
    • Journal of Nutrition and Health
    • /
    • v.42 no.6
    • /
    • pp.505-515
    • /
    • 2009
  • Collagen is the major matrix protein in dermis and consists of proline and lysine, which are hydroxylated by prolyl hydroxylase (PH) and lysyl hydroxylase (LH) with cofactors such as vitamin C, oxygen, iron (Fe$^{2+}$), ketoglutarate and silicon. The collagen degradation is regulated by matrix metalloproteinase-1 (MMP-1), of which is the major collagen-degrading proteinase whereas tissue inhibitors of metalloproteinase-1 (TIMP-1) bind to MMP-1 thereby inhibiting MMP-1 activity. In this study, we investigated the effects of vitamin C, silicon and iron on mRNA, protein expressions of PH, LH, MMP-1 and TIMP-1. The physiological concentrations of vitamin C (0-100 $\mu$M), silicon (0-50 $\mu$M) and iron (Fe$^{2+}$:0-50 $\mu$M) were treated to human dermal fibroblast cells (HS27 cells) for 3 or 5days. The expression level of mRNA and protein was increased in not only PH but also LH when cells were incubated with vitamin C. A similar increase in LH mRNA or protein expression occurred when cells were incubated with silicon. Our results suggest that treatment of vitamin C and silicon increased mRNA and protein expression of PH and LH in human dermal fibroblast.