DOI QR코드

DOI QR Code

Structural Requirements of Minoxidil Analogs for Enhancing Lysyl Hydroxylase Inhibitory Activity

Lysyl Hydroxylase의 저해활성을 증가시키기 위한 Minoxidil 유도체들의 구조적인 요건

  • Myung, Pyung-Keun (College of Pharmacy, Chungnam National University) ;
  • Sung, Nack-Do (College of Agriculture and Life Science, Chungnam National University) ;
  • Lee, Jae-Heung (School of Mechanical Engineering, Korea University of Technology and Education)
  • 명평근 (충남대학교 약학대학) ;
  • 성낙도 (충남대학교 농업생명과학대학) ;
  • 이재흥 (한국기술교육대학교 기계정보공학부)
  • Received : 2011.10.21
  • Accepted : 2012.01.17
  • Published : 2012.04.30

Abstract

In order to explore structural features of minoxidil analogs with a view of enhancing lysyl hydroxylase (LH) inhibitory activity, molecular holographic QSAR (HQSAR) and CoMSIA (comparative molecular similarity indices analysis) were performed. The results from the atomic contributions with optimized the HQSAR 6-2 model indicated that, in case of pyrimidine-1-N-oxide substituent, C2 atom of pyrimidine ring and C'3-C'4 bond of 4-piperidinol group showed the highest impact on the inhibitory activity towards LH enzyme. It was also evident from the information of the optimized CoMSIA F5 model that the inhibitory activity mainly depended on the hydrophobic field contribution (36%) and the hydrogen bond (H-bond) field contribution (49.2%) of substrate molecule. Particularly, it is predicted that the functional groups which disfavor H-bond acceptors in large space around the piperidinol group and also the functional groups which favor the H-bond acceptors at C'4 (& C'5) atom in $R_5$ group play a role for increased inhibitory activity. With this in mind, it is likely that a novel candidate having more improved inhibitory activity on hair growth could be designed in the future.

Keywords

References

  1. Zappacosta, A. R. (1980) Reversal of baldness in patient receiving minoxidil for hypertension. N. Engl. J. Med. 303: 1480-1481.
  2. Suzuki, M. (2008) Hair loss mechanisms and treatment materials: A review. Cosmetics Toiletries 123: 51-58.
  3. Meisheri, K. D., G. A. Johnson, and L. Puddington (1993) Enzymatic and non-enzymatic sulfation mechanisms in the biological actions of minoxidil. Biochem. Pharmacol. 45: 271-279. https://doi.org/10.1016/0006-2952(93)90061-Z
  4. Buhl, A. E., S. J. Conrad, and D. J. Waldon (1993) Potassium channel conductance as a control mechanism in hair follicles. J. Invest. Dermatol. 101: 148-152. https://doi.org/10.1111/1523-1747.ep12363290
  5. Messenger, A. G. and J. Rundegren (2004) Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol. 150: 186-194. https://doi.org/10.1111/j.1365-2133.2004.05785.x
  6. Samimi, A. and J. A. Last (2001) Mechanism of inhibition of lysyl hydroxylase activity by the organophosphates malathion and malaoxon. Toxicol. Appl. Pharmacol. 176: 181-186. https://doi.org/10.1006/taap.2001.9275
  7. Walker, L. C., M. A. Overstreet, and H. N. Yeowell (2005) Tissue-specific expression and regulation of the alternatively-spliced forms of lysyl hydroxylase 2 (LH2) in human kidney cells and skin fibroblasts. Matrix Biol. 23: 515-523. https://doi.org/10.1016/j.matbio.2004.11.002
  8. Gelse, K., E. Poschl, and T. Aigner (2003) Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55: 1531-1546. https://doi.org/10.1016/j.addr.2003.08.002
  9. Zuurmond, A. M., A. J. Verhoeven, E. A. Dura, J. D. Groot, and R. A. Bank (2004) Minoxidil exerts different effects on gene expression of lysyl hydroxylase 1, 2, and 3: Implications for collagen cross-linking and treatment of fibrosis. Matrix Biol. 24: 261-270.
  10. Trueb, R. M. (2001) The value of hair cosmetics and pharmaceuticals. Dermatology 202: 275-282. https://doi.org/10.1159/000051658
  11. Murad, S. and S. R. Pinnell (1987) Suppression of fibroblast proliferation and lysyl hydroxylase activity by minoxidil. J. Biol. Chem. 262: 11973-11978.
  12. Hautala, T., J. Heikkinen, K. I. Kivirikko, and R. Myllyla (1992) Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts. Biochem. J. 283: 51-54. https://doi.org/10.1042/bj2830051
  13. Kim, S. J. and N. D. Sung (2011) CoMFA analysis on the inhibitory activity against lysyl hydroxylase of minoxidil analogues. J. Korean Soc. Cosm. 17: 753-758.
  14. Passoja, K., K. Rautavuoma, L. Ala-Kokko, T. Kosonen, and K. I. Kivirikko (1998) Cloning and characterization of a third human lysyl hydroxylase isoform. Proc. Natl. Acad. Sci. USA. 95: 10482-10486. https://doi.org/10.1073/pnas.95.18.10482
  15. Hansch, C. (1969) A quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res. 2: 232-239. https://doi.org/10.1021/ar50020a002
  16. Heritage, T. W. and D. R. Lowis (1999) Molecular hologram QSAR, pp. 212-225. In: A. S. Parrill, and M. R. Reddy (eds.), Rational drug design: Novel Methodology and Practical Applications, ACS Symposium Series, USA.
  17. Klebe, G., U. Abraham, and T. Mietzner (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 37: 4130-4146. https://doi.org/10.1021/jm00050a010
  18. Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO 63144-2913, USA. http://www.tripos.com/Bookshelf/hqsar. (2006).
  19. Murad, S., M. C. Tennant, and S. R. Pinnell (1992) Structure-activity relationship of minoxidil analogs as inhibitors of lysyl hydroxylase in cultured fibroblasts. Arch. Biochem. Biophys. 292: 234-238. https://doi.org/10.1016/0003-9861(92)90073-6
  20. Murad, S., L. C. Walker, S. Tajima, and S. R, Pinnell (1994) Minimum structural requirements for minoxidil inhibition of lysyl hydroxylase in cultured fibroblasts. Arch. Biochem. Biophy. 308: 42-47. https://doi.org/10.1006/abbi.1994.1006
  21. Sung, N. D. and J. H. Park (2011) 3D-QSAR analysis and molecular docking of thiosemicarbazone analogues as a potent tyrosinase inhibitor. Bull. Korean Chem. Soc. 32: 1241-1248. https://doi.org/10.5012/bkcs.2011.32.4.1241
  22. Tong, W., D. R. Lowis, R. Perkins, Y. Chen, W. J. Welsh, D. W. Goddette, T. W. Heritage, and D. M. Sheehan (1998) Evaluation of quantitative structure-activity relationship methods for largescale prediction of chemicals binding to the estrogen receptor. J. Chem. Inf. Comput. Sci. 38: 669-67. https://doi.org/10.1021/ci980008g
  23. Micheal, S., B. T. David, and W. Peter (1999) Effect of parameter variations on the effectiveness of HQSAR analyses, Quant. Struc-Act. Relat. 18: 245-252. https://doi.org/10.1002/(SICI)1521-3838(199907)18:3<245::AID-QSAR245>3.0.CO;2-O
  24. Schneider, G. and K. H. Baringhause (2008) Molecular design; Concepts and applications. pp. 64-65. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.