• Title/Summary/Keyword: luting

Search Result 135, Processing Time 0.029 seconds

Microtensile bond strength of CAD/CAM-fabricated polymer-ceramics to different adhesive resin cements

  • Sadighpour, Leyla;Geramipanah, Farideh;Ghasri, Zahra;Neshatian, Mehrnoosh
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.40.1-40.10
    • /
    • 2018
  • Objectives: This study evaluated the microtensile bond strength (${\mu}TBS$) of polymer-ceramic and indirect composite resin with 3 classes of resin cements. Materials and Methods: Two computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated polymer-ceramics (Enamic [ENA; Vita] and Lava Ultimate [LAV; 3M ESPE]) and a laboratory indirect composite resin (Gradia [GRA; GC Corp.]) were equally divided into 6 groups (n = 18) with 3 classes of resin cements: Variolink N (VAR; Vivadent), RelyX U200 (RXU; 3M ESPE), and Panavia F2 (PAN; Kuraray). The ${\mu}TBS$ values were compared between groups by 2-way analysis of variance and the post hoc Tamhane test (${\alpha}=0.05$). Results: Restorative materials and resin cements significantly influenced ${\mu}TBS$ (p < 0.05). In the GRA group, the highest ${\mu}TBS$ was found with RXU ($27.40{\pm}5.39N$) and the lowest with VAR ($13.54{\pm}6.04N$) (p < 0.05). Similar trends were observed in the ENA group. In the LAV group, the highest ${\mu}TBS$ was observed with VAR ($27.45{\pm}5.84N$) and the lowest with PAN ($10.67{\pm}4.37N$) (p < 0.05). PAN had comparable results to those of ENA and GRA, whereas the ${\mu}TBS$ values were significantly lower with LAV (p = 0.001). The highest bond strength of RXU was found with GRA ($27.40{\pm}5.39N$, p = 0.001). PAN showed the lowest ${\mu}TBS$ with LAV ($10.67{\pm}4.37N$; p < 0.001). Conclusions: When applied according to the manufacturers' recommendations, the ${\mu}TBS$ of polymer-ceramic CAD/CAM materials and indirect composites is influenced by the luting cements.

Choice of resin cement shades for a high-translucency zirconia product to mask dark, discolored or metal substrates

  • Dai, Shiqi;Chen, Chen;Tang, Mo;Chen, Ying;Yang, Lu;He, Feng;Chen, Bingzhuo;Xie, Haifeng
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.286-296
    • /
    • 2019
  • PURPOSE. The aim was to study the masking ability of high-translucency monolithic zirconia and provide guidance in selecting resin luting cements in order to mask discolored substrates. MATERIALS AND METHODS. 160 high-translucency zirconia specimens were divided into 32 groups depending on their thickness and shades. Using five shades of try-in paste, the specimens were luted onto the substrates (Co-Cr, precious-metal, opaque porcelain-sintered Co-Cr, opaque porcelain-sintered precious-metal, and 5M3-shade zirconia). All CIELAB color parameters were measured and statistically analyzed. RESULTS. Zirconia shade and thickness and try-in paste shade affected CIELAB color parameters (P=.000) in different substrates groups, and there were interactions among these factors (P=.000). All five try-in paste shades can be chosen to achieve ${\Delta}E$ values of zirconia with 1.2 - 1.5 mm for masking dark-tooth-like 5M3-shade and zirconia with 1.5 mm for masking precious-metal groups < 2.6. Only suitable try-in paste shades were used, can ${\Delta}E$ values that less than 2.6 be achieved when applied translucent monolithic zirconia with 0.7-1.0 mm for masking dark-tooth-like 5M3-shade and zirconia with 0.7 - 1.2 mm for masking precious-metal groups. CONCLUSION. Choosing suitable resin cement shades is necessary for high-translucency monolithic zirconia to achieve ideal masking ability (${\Delta}E$ < 2.6) on the dark-tooth.

Effect of tack cure time on polymerization shrinkage of dual-cure resin cement

  • Choi, Yoorina;Heo, Yu-Keong;Jung, Ji-Hye;Chang, Hoon-Sang
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.184-189
    • /
    • 2021
  • When luting indirect restorations with dual-cure resin cement (DCRC), excess cement can be easily removed by performing tack cure of DCRC for a few seconds. The purpose of this study was to evaluate whether different tack cure times affect polymerization shrinkage (PS) of the selected DCRC. One dual-cure resin cement (G-CEM LinkAce, GC) was used for measuring PS in light-cure (LC group), self-cure (SC group), and two tack-cure modes. In the first tack-cure subgroup, tack cure was performed for 1, 2, 3, and 5 seconds, followed by light cure after 2 minutes of remnant removal time in each case (TC-LC groups). In the other tack-cure subgroup, tack cure was performed for the same lengths of time, but followed by self-cure in each case (TC-SC groups). PS was measured by a modified bonded disc method for 1,800 seconds. One-way analysis of variance followed by Duncan's post hoc test was used to determine any statistically significant differences among the test groups (α = 0.05). When the DCRC was self-cured after tack cure, PS was significantly lower than when it was only self-cured (p < 0.05); however, tack cure time did not affect PS (p > 0.05). When the DCRC was light-cured, PS was not affected by tack cure or tack cure time (p > 0.05). Therefore, tack cure within 5 seconds did not negatively affect the final PS when the DCRC was light-cured after cement remnant removal.

Effect of irrigation protocols on smear layer removal, bond strength and nanoleakage of fiber posts using a self-adhesive resin cement

  • Rodrigo Stadler Alessi;Renata Terumi Jitumori ;Bruna Fortes Bittencourt;Giovana Mongruel Gomes ;Joao Carlos Gomes
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.28.1-28.13
    • /
    • 2023
  • Objectives: This study aimed to investigate the effect of the application method of 2% chlorhexidine (CHX) and its influence on the adhesion of fiberglass posts cemented with a self-adhesive resin cement. Materials and Methods: Sixty human mandibular premolars were endodontically treated and divided into 5 groups (n = 12), according to the canal irrigant and its application method: 2 groups with conventional syringe irrigation (CSI)-2.5% sodium hypochlorite (NaOCl) (control) and 2% CHX- and 3 groups with 2% CHX irrigation/activation-by passive ultrasonic irrigation (PUI), Easy Clean file, and XP-Endo Finisher file. Two roots per group were evaluated for smear layer (SL) removal by scanning electron microscopy. For other roots, fiber posts were luted using a self-adhesive resin cement. The roots were sectioned into 6 slices for push-out bond strength (BS) (7/group) and nanoleakage (NL) (3/group). Data from SL removal were submitted to Kruskal-Wallis and Student-Newman-Keuls tests (α = 0.05). Data from BS and NL were evaluated by 2-way analysis of variance and Tukey's test (α = 0.05). Results: For SL removal and BS, the CHX irrigation/activation promoted better values than CSI with CHX (p < 0.05), but it was not significantly different from CSI with NaOCl (p > 0.05). For NL, the lowest values were obtained by the chlorhexidine irrigation/activation groups (p < 0.05). Conclusions: Active 2% CHX irrigation can be used to improve the post space cleaning and adhesion before fiber post cementation with self-adhesive resin cements.

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF

BOND STRENGTH OF BONDED AMALGAM USING DENIAL ADHESIVES (치과용 접착제를 사용한 접착 아말감의 결합 강도)

  • Kam, Dong-Hoon;Lee, Sang-Dae;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.284-295
    • /
    • 1999
  • The purpose of this study was to measure and analyze the bond strength of bonded amalgam using dental adhesives and to compare this with light-curing composite resin. Sections 8mm in diameter were punched out from the labial surface of bovine anterior teeth. These were embedded in clear acrylic resin blocks with labial surface facing out. 55 specimens were made for enamel and dentin each. After dividing these into 5 groups, group 1: Superbond C&B, group 2: Panavia 21, group 3: All-Bond 2, group 4: Fuji I Glass Ionomer Luting Cement, group 5: Scotchbond Multi-Purpose(Restorative Z-100), molds with holes of 6.3mm in diameter and 1.5mm in depth were placed over the specimens. The exposed tooth surfaces were treated with adhesives and the molds were filled with amalgam. In group 5, the mold was filled with composite resin and light-cured for 40 seconds. The author measured all specimens for bond strength 24 hours after amalgam filing and analyzed fracture surfaces. The following results were obtained: 1. Among the dentin groups, groups 1, 2 and 4 showed significantly lower bond strength compared with group 5(P<0.05). 2. Among the enamel groups, group 4 showed significantly lower bond strength compared with group 5(P<0.05). 3. In group 2, 2D showed significantly lower bond strength compared with group 2E(P<0.05). Other adhesives showed no such differences in bond strength between dentin and enamel(P>0.05). 4. Cohesive failure was observed in groups 1E and 5D, while mixed failure was seen in groups 1 and 5. Only adhesive failures were noted in groups 2, 3, 4.

  • PDF

Rheological properties of dental resin cements during polymerization (치과용 레진 시멘트의 유변학적 성질)

  • Lee, Jae-Rim;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • Purpose: The purpose of this study was to observe the change of viscoelastic properties of dental resin cements during polymerization. Materials and methods: Six commercially available resin cement materials (Clearfil SA luting, Panavia F 2.0, Zirconite, Variolink N, RelyX Unicem clicker, RelyX U200) were investigated in this study. A dynamic oscillation-time sweep test was performed with AR1500 stress controlled rheometer at $32^{\circ}C$. The changes in shear storage modulus (G'), shear loss modulus (G"), loss tangent (tan ${\delta}$) and displacement were measured for twenty minutes and repeated three times for each material. The data were analyzed using one-way ANOVA and Tukey's post hoc test (${\alpha}$=0.05). Results: After mixing, all materials demonstrated an increase in G' with time, reaching the plateau in the end. RelyX U200 demonstrated the highest G' value, while RelyX Unicem (clicker type) and Variolink N demonstrated the lowest G' value at the end of experimental time. Tan ${\delta}$was maintained at some level and reached the zero at the starting point where G' began to increase. The tan ${\delta}$and displacement of the tested materials showed similar pattern in the graph within change of time. The displacement of all 6 materials approached to zero within 6 minutes. Conclusion: Compared to other resin cements used in this study, RelyX U200 maintained plastic property for a longer period of time. When it completed the curing process, RelyX U200 had the highest stiffness. It is convenient for clinicians to cement multiple units of dental prostheses simultaneously.

The study of shear bond strength of a self-adhesive resin luting cement to dentin (상아질에 대한 자가 접착 레진 시멘트의 전단결합강도에 관한 연구)

  • In, Hee-Sun;Park, Jong-Il;Choi, Jong-In;Cho, Hye-Won;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.535-543
    • /
    • 2008
  • Purpose: The objective of this study was to compare the bonding characteristics of a new self-adhesive resin cement to dentin, which does not require bonding and conditioning procedure of the tooth surface, and conventional resin cement. The effect of phosphoric acid etching prior to application of self-adhesive resin cement on the shear bond strength was also evaluated. Material and methods: Fortyfive non-carious human adult molars extracted within 6 months were embedded in chemically cured acrylic resin. The teeth were ground with a series of SiC-papers ending with 800 grit until the flat dentin surfaces of the teeth were exposed. The teeth were randomly divided into 3 experimental groups. In group 1, self-adhesive resin cement, RelyX Unicem (3M ESPE, Seefeld, Germany) was bonded without any conditioning of teeth. In group 2, RelyX Unicem was bonded to teeth after phosphoric acid etching. For group 3, Syntac Primer (Ivoclar Vivadent AG, Schaan, Liechtenstein) was applied to the teeth before Syntac adhesive (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Helibond (Ivoclar Vivadent AG, Schaan, Liechtenstein) followed by conventional resin cement, Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein). To make a shear bond strength test model, a plastic tuble (3 mm diameter, 3 mm height) was applied to the dentin surfaces at a right angle and filled it with respective resin cement, and light-polymerized for 40 seconds. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before test. Universal Testing Machine (Z020, Zwick, Ulm, Germany) at a cross head speed of 1 mm/min was used to evaluate the shear bond strength. The failure sites were inspected under a magnifier and Scanning Electron Microscope. The data was analyzed with One way ANOVA and Scheffe test at ${\alpha}$= 0.05. Results: (1) The shear bond strengths to dentin of RelyX Unicem was not significantly different from those of Variolink II/Syntac. (2) Phosphoric acid etching lowered the shear bond strength of RelyX Unicem significantly. (3) Most of RelyX Unicem and Variolink II showed mixed fractures, while all the specimens of RelyX Unicem with phosphoric acid etching demonstrated adhesive failure between dentin and resin cement. Conclusion: Shear bond strength to dentin of self-adhesive resin cement is not significantly different from conventional resin cement, and phosphoric acid etching decrease the shear bond strength to dentin of self-adhesive resin cement.

FEA estimates of margin design in all ceramic crowns (완전 도재관을 위한 지대치 형성시 변연 형태에 따른 응력 분포의 유한요소법적 비교)

  • Han, Sang-Hyun;Cho, Jung-Hyeon;Lee, En-Jung;Jeong, Suk-In;Oh, Nam-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Statement of problem: Over the past decade, increased demand for esthetically pleasing restorations has led to the development of all-ceramic systems. Recent reports suggest that the all-ceramic crowns have excellent physical properties, wear resistance, and color stability. In addition, numerous ceramics have excellent biocompatibility, a natural appearance, and improved physical bonding with resin composite luting agents. However, the brittle nature of ceramics has been a major factor in their restriction for universal usage. Functional occlusal loading can generate stress in the luting agent, and the stress distribution may be affected by the marginal geometry at the finish line. Tooth preparation for fixed prosthodontics requires a decision regarding the marginal configuration. The design dictates the shape and bulk of the all ceramic crowns and influences the fit at the margin. Purpose: The purpose of this study was to evaluate the stress distribution within marginal configurations of all- ceramic crowns (90-degree shoulder, 110-degree shoulder, 135-degree shoulder). Material and methods: The force is applied from a direction of 45 degrees to the vertical tooth axis. Three-dimensional finite element analysis was selected to determine stress levels and distributions. Results and conclusion: The result of stress level for the shoulder marginal configuration was more effective on stress distribution at 135-degree shoulder margin. But the stresses concentrated around at 135-degree shoulder margin. The stress decreased apically at the surface between cements and alumina core, and increased apically at the surface between alumina core and veneering porcelain.

Effect of working time on the film thickness of dental resin cements (레진 시멘트의 혼합 후 시간에 따른 피막도의 변화)

  • Yi, Yu-Seung;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.325-329
    • /
    • 2015
  • Purpose: The aim of this study was to compare the film thicknesses of several resin cements as a function of time after mixing and to examine the effect of working time on the film thicknesses. Materials and methods: The film thickness (${\mu}m$) of 4 resin cements (n=10), 1 composite resin (Panavia F 2.0), 3 self-adhesive resin (Clearfil SA luting, Zirconite, RelyX U200) cements was measured at 20-second intervals after mixing of the cements up to 200 seconds under a load of 50 N. Linear regression was fitted to verify the effect of working time on the film thickness of each cement. Data were compared to the working time recommended by manufacturers using Wilcoxon test ($\alpha$=.05). Results: All of the materials showed a positive linear correlation between the film thickness and working time. There was no statistically significant difference between the working time based on our results and the values recommended by the manufacturers even though there was a discrepancy between those two values. Conclusion: The film thickness of resin cements could increase with the increase of working time. Working time to meet the ISO standard of $50-{\mu}m$ maximum film thickness could be different from the manufacturer's recommended value.