• Title/Summary/Keyword: lunar exploration

Search Result 135, Processing Time 0.025 seconds

Performance Analysis on Delay- and Disruption-Tolerant Network in Interplanetary Network (행성 간 통신에서의 지연/분열 허용 네트워크 성능 분석)

  • Baek, Jaeuk;Han, Sang Ik;Kim, In-kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.42-49
    • /
    • 2017
  • Delay- and Disruption-Tolerant Network (DTN) has been considered as a key technology to overcome main challenges in interplanetary communications such as an intermittent connectivity and high bit error rates. The lack of end-to-end connectivity between source and destination results in long and variable delays and data loss, hence the Internet Protocols cannot operate properly in such environments because it requires an end-to-end connectivity. The DTN, which utilizes 'store-and-forward' message passing scheme between nodes, can overcome the lack of end-to-end connectivity in Interplanetary Network (IPN). In this paper, DTN is applied to 3-hop relay IPN, where messages are transmitted from Earth ground station to Lunar lander through Earth satellite and Lunar orbiter. ONE simulator is used to reflect the real environment of IPN and an efficient resource management method are analyzed to guarantee the message delivery by optimizing a message TTL (Time to Live), buffer size and message fragmentation.

Experimental Analysis of Lunar Rover Wheel's Mobility Performance Depending on Soil Condition and Wheel Configuration (지반 조건 및 휠 형상에 따른 달탐사 로버 휠 주행 성능 평가 실험 연구)

  • Wang, Cheng-Can;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.693-703
    • /
    • 2017
  • Rover wheel's mobility depends on soil's condition and wheel's design. The purpose of this study is to evaluate the effect of soil conditions, which are Jumunjin sand and Korean lunar soil simulant (KLS-1), on wheel's motion performance. The experiments were performed by using a single wheel testbed with a wheel which grouser height is 15mm on Jumunjin sand and KLS-1, respectively. Also the influence of grouser length to wheel's mobility performance was studied. The experimental results of torque, drawbar pull and sinkage relating to slip ratio were discussed and analyzed to evaluate wheel's motion performance. Results showed wheel moving on KLS-1 has high performance than Jumunjin sand. Wheel's mobility performance was influenced by soil's properties of cohesion and frictional angle. In addition, wheel's performance of drawbar pull and Torque increased with the increasing of grouser length.

Optimization of Material Extruding Performance to Build a 3D Printed Habitat on the Moon and Mars (달, 화성 3D 프린팅 주거지 건설을 위한 재료 사출기능 최적화 연구)

  • Lee, Jin Young;Lee, Tai Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.345-349
    • /
    • 2019
  • The National Aeronautics and Space Administration (NASA) has long been studying the essential elements of manned planetary exploration and has held several international challenges to encourage the research works related to it. One of them was the NASA Centennial Challenge Programs which started in 2015. Following the second in 2017, the third is currently going on in 2019. Participating "3D-Printed Habitat Challenge", one of the challenges in the second program, this research team designed and developed the 3D printer extruding module for the Lunar Simulant (Korea Hanyang Lunar Simulant-1; KOHLS-1) and the polymer. For optimizing the modul, a cylindrical specimen of ${\varnothing}150{\times}300mm^3$ volume and a specimen of $200{\times}100{\times}650mm^3$ volume were manufactured and their compressive and flexural strengths were tested. The findings can help automatize the space construction in the future.

Vacuum Pressure Effect on Thermal Conductivity of KLS-1 (진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도 평가)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Shin, Hyu-Soung;Chung, Taeil
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.51-58
    • /
    • 2021
  • South Korea, as the 10th country to join the Artemis program led by NASA, is actively supporting various researches related to the lunar exploration. In particular, the utilization of water as a resource in the Moon has been focused since it was discovered that ice exists at the lunar pole as a form of frozen soil. Information on the thermal conductivity of lunar regolith can be used to estimate the existence for ice water extraction by thermal mining. In this study, the vacuum pressure effect on thermal conductivity of KLS-1 was investigated with a DTVC (Dusty Thermal Vacuum Chamber). The reliability of KLS-1 was reconfirmed through comparison with thermal conductivity of known standard lunar regolith simulants such as JSC-1A. An empirical equation to assess thermal conductivity considering dry unit weight and vacuum pressure was proposed. The results from this study can be implemented to simulate lunar cryogenic environment using the DTVC.

Europe's Space Exploration and Korea's Space Exploration Strategy from the Perspective of Science and Technology Diplomacy (과학기술외교 관점에서 바라본 유럽의 우주탐사와 우리나라 우주탐사전략)

  • Nammi Choe
    • Journal of Space Technology and Applications
    • /
    • v.2 no.3
    • /
    • pp.195-205
    • /
    • 2022
  • Space exploration is an area where international cooperation takes place more actively than any other space activities such as Earth observation, communication and navigation. This is because a country cannot afford a huge budget to have full infrastructure for deep space exploration, such as a heavy launch vehicle, communication and energy infrastructure, and human habitats, and has learned that it is not sustainable. Korea expressed its willingness to join humanity's epic exploration journey by signing the Artemis Accords in 2021 and launching Danuri lunar orbiter in 2022. The beginning of space exploration means that Korea's space activities have expanded beyond the stage of focusing only on technology development to set norms necessary to accompany other countries and cooperate diplomatically to solve exposed problems. This paper analyzed European space policy and space exploration, which are most actively participating in the Artemis Program and exerting diplomatic power in the space field, from the perspective of science and technology diplomacy. The suggestions for Korea's space exploration strategy from the perspective of science and technology diplomacy were drawn by examining the international cooperation strategies in Europe's space activities ranging from space policy, space strategy, and space exploration program to project units.

Precision exploration of space resources using laser-induced breakdown spectroscopy (레이저 유도 플라즈마 분광분석법을 활용한 정밀 우주 자원 탐사)

  • Choi, Soo-Jin;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • A short laser pulse irradiates a sample to create the highly energetic plasma that emits light of a specific wavelength peak according to the material. By identifying different peaks for the analyzed samples, its chemical composition can be rapidly determined. The LIBS (Laser-Induced Breakdown Spectroscopy) has great advantages as an elemental analyzer on board a space rover, namely real-time rapid analysis and stand-off detection. The LIBS signal intensity is remarkably increased by using double-pulse LIBS system for component analysis of lunar environments where the surrounding pressure is low. Also the angle of target is adjusted for replicating arbitrary shapes of the specimen.

Status of Navigation Satellite System Services and Signals (위성항법시스템 서비스 및 신호 현황)

  • K. Han;E. Bang;H. Lim;S. Lee;S. Park
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.12-25
    • /
    • 2023
  • Positioning, navigation, and timing information has become a key element in the national core infrastructure and for emerging technologies, such as autonomous driving, lunar exploration, financial systems, and drones. Therefore, the provision of that information by navigation satellite systems is becoming increasingly important. Existing systems such as GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), and BDS (BeiDou Navigation Satellite System) also provide augmentation, safety-of-life, search & rescue and short message communication and authentication services to increase their competitiveness. Those services and the signals generated for their provision have their own purpose and requirements. This article presents an overview of existing or planned satellite navigation satellite system services and signals, aiming to help understand their current status.

FRICTION UNITS FOR THE MOON

  • Drozdov, Yu.N.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.389-396
    • /
    • 2002
  • In XXI century it is necessary to expect the recommencement and development of activities on mastering the Moon. In the long term it is construction of manned lunar bases with industrial, astrophysical, procuring, repair equipment and services. Interplanetary flights from the Moon demand smaller power expenditures, than from the Earth, therefore it is favourable to use its surface for the construction of space-vehicle launching sites. Flights of devices in libration points in the system 'Earth - Moon' are considered. Experience of engineering system creation for the Moon displays the great complexity in provision of serviceability and reliability of friction units. Open friction units should operate under following conditions on the Moon: pressure of environment (vacuum) $p\;>10\;^{-10}$ Pa; wide range of temperature change $+150^{\circ}C\;...170^{\circ}C$; high evaporability of lubricants; influence of temperature gradients and warping of constructions; sublimation of elements of constructional materials; irradiation of different physical nature; effect of micrometeorites; reduced gravitation; influence of abrasive particles of lunar ground; requirements on minimization of size and weight characteristics of a construction (high tension); undesirability (impossibility) of application of liquid and plastic lubricants; vibration, shock, acoustic loadings during start and landings to the Earth; difficulties in repair-regenerative operations in conditions of the Moon etc. Adhesive interaction of conjugated surfaces is the principal reason of possible failures of rubbed units on the Moon. In the research of the Moon automatic interplanetary stations of 'Luna' (USSR), 'Surveyer', 'Apollo' (USA) series were used. Stations executed functions of flying, landing, artificial satellites of the Moon, moon-rovers and manned spacecrafts such as 'Apollo'. The experimental- theoretical researches carried out in the sixtieth years on tribology for conditions of the Moon appeared to be rather useful to engineering of an outer space exploration and the decision of complex problems for the friction units operating in extreme conditions on the Earth. For the creation of highly loaded friction units for the long service life on the Moon it is required not only to use accumulated experience and designed technologies, but also to carry out wide scientific research.

  • PDF

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

Rendezvous Mission to Apophis: III. Polarimetry of S-type: For A Better Understanding of Surficial Evolution

  • Geem, Jooyeon;Jeong, Minsup;Jin, Sunho;Sim, Chae Kyung;Bach, Yoonsoo P.;Ishiguro, Masateru;Kwon, Yuna G.;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.4-58
    • /
    • 2021
  • Asteroids have undergone various processes such as impacts, space weathering, and thermal evolution. Because they expose their surfaces to space without atmosphere, these evolutional processes have been recorded directly on their surfaces. The remote-sensing observations have been conducted to reveal these evolutional histories of the target asteroids. For example, crater and boulder distributions are unambiguous evidence for past nondestructive impacts with other celestial bodies. Multiband and spectroscopic observations have revealed space-weathering history (as well as compositions). Whereas most physical quantities have been examined intensively using spacecraft and telescopes, only a little has been studied on "the grain size". It is one of the fundamental physical quantities for diagnosing the collisional and thermal history of asteroids. Our group has conducted polarimetric research of asteroids (as well as Moon [1]) to determine the particle size and further investigate the evolutional histories of target asteroids [2],[3]. For example, the existence of regolith on an S-type asteroid, Toutatis, was suggested almost twenty years before space exploration [4]. Moreover, we reported that near-Sun asteroids indicate a signature of submillimeter grains, which could be created by a thermal sintering process by solar radiation [5]. However, it is important to note that in-situ polarimetry has not been reported on the asteroid surface, although the Korean Lunar Exploration Program aims to do polarimetry on the lunar surface [6]. Therefore, it is expected that the polarizer mounted on the Korean Apophis spacecraft can make the first estimate of the grain size and its regional variation over the Apophis surface. In this presentation, we outline research of S-type asteroid surfaces through remote-sensing observations and consider the role of polarimetry. Based on this review, we consider the purpose, potentiality, and strategy of the polarimetry using the onboard device for the Apophis spacecraft. We will report a possible polarization phase curve of Apophis estimated from ordinary chondrites and past observational data of S-type asteroids, taking account of the space weathering effect. Based on this estimation, we will consider the strategy of how to determine the particle size (and space weathering degree) of the Apophis surface. We will also mention the detectability of dust hovering on the surface.

  • PDF