• Title/Summary/Keyword: lumping scheme

Search Result 9, Processing Time 0.019 seconds

The dynamic explicit analysis of auto-body panel stamping process and investigating parameter affects of dynamic analysis (차체판넬 스템핑공정의 동적 외연적해석과 동적해석에 미치는 영향인자 분석)

  • Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.380-390
    • /
    • 1998
  • In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.

A Dynamic-explicit Finite Element Analysis for Hydro-forming Process (Hydro-forming 공정을 위한 동적-외연적 유한요소해석)

  • Jung, D.W.;Hwang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of Hydro-forming processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Hydro-forming process for auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the Hydro-forming processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method (동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

A Study of Forming Analysis by using Dynamic-explicit Finite Element Method in Can-container Production Process of Multi-Stage Assembly (Multi-Stage 조립품인 캔-용기 생산 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.58-63
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of multi-stage stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation Multi-Stage stamping is analyzed by using dynamic-explicit finite element method. Further, the simulated results for the panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

A Study of Forming Analysis by using Dynamic-Explicit Finite Element Method in Auto-Body Stamping (차체 판넬 스템핑 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.63-72
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process (동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용)

  • 정동원;양동열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF

A high precision shear deformable element for free vibration of thick/thin composite trapezoidal plates

  • Haldar, S.;Manna, M.C.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.213-229
    • /
    • 2003
  • A high precision shear deformable triangular element has been proposed for free vibration analysis of composite trapezoidal plates. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has fifty-five degrees of freedom, which has been reduced to forty-eight by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different side ratios (b/a), boundary conditions, thickness ratios (h/a=0.01, 0.1 and 0.2), number of layers and fibre angle orientations have been analyzed by the proposed shear locking free element. Trapezoidal laminate with concentrated mass at the centre has also been analyzed. An efficient mass lumping scheme has been recommended, where the effect of rotary inertia has been included. For validation of the present element and formulation few results of isotropic trapezoidal plate and square composite laminate have been compared with those obtained from open literatures. The numerical results for composite trapezoidal laminate have been given as new results.

Numerical Dispersion and Its Control for 1-D Finite Element Simulation of Stress Wave Propagation (응력파 전파 수치모의를 위한 일차원 유한요소모형의 분산 특성 및 제어)

  • 이종세;유한규;윤성범
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • With an aim at eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based one-dimensional finite element model are analyzed and some dispersion control scheme are proposed in this paper The dispersion analyses are carried out for two types of mass matrix, namely the consistent and the lumped mass matrices. Based on the finding of the analyses, dispersion correction techniques are developed for both the implicit and explicit schemes. For the implicit scheme, either the weighting factor for the spatial derivatives of each time level or the lumping coefficient for mass matrix is adjusted to minimize the numerical dispersion. In the case of the explicit scheme an artificial dispersion term is introduced in the governing equation. The validity of the dispersion correction techniques proposed in this study is demonstrated by comparing the numerical solutions obtained using the Present techniques with the analytical ones.