• 제목/요약/키워드: lumped-system approach

검색결과 40건 처리시간 0.024초

파워 분배망을 고려한 디지털 회로 시스템의 설계와 분석 (Design and Analysis of Digital Circuit System Considering Power Distribution Networks)

  • 이상민;문규;위재경
    • 대한전자공학회논문지SD
    • /
    • 제41권4호
    • /
    • pp.15-22
    • /
    • 2004
  • 이 논문은 PCB의 PDN(Power Distribution Network) 시스템을 고려한 채널 분석을 나타내었다. 설계자가 원하는 PDN 시스템을 설계하기 위하여, 전체 주파수 범위의 PDN이 요구하는 임피던스를 얻는 유용한 설계방법을 제안하였다. 제안된 방법은 주파수 영역과 관계된 계층적 배치 접관방식과 보트와 decoupling 커패시터 사이의 current 흐름의 간섭을 고려한 path-based equivalent 회로를 기본으로 하였다. 비록 빠르고 쉬운 계산을 위한 lumped model일지라도, 실험 결과는 제안된 모델이 numerical 분석처럼 거의 정확함을 보였다. PDN 시스텐의 분석은 패키지 인덕턴스가 파워 노이즈, 데이터 채널을 통한 신호 이동에 영향을 받는다는 것을 보여주고 있으나, 보드 PDN 또한 정확한 채널 신호를 위해 무시할 수 없다는 것을 보여준다. 따라서 설계자는 반드시 초고속 디지털 시스템의 첫 스팩 설계로부터 보드, 패키지, 칩 등을 동시에 디자인을 해야 한다.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

질량/스프링 계를 고려한 리니어 왕복 액추에이터 시스템의 등가 임피던스 모델링과 주파수 특성 해석 (Equivalent Impedance Modelling and Frequency Characteristic Analysis of Linear Oscillatory Actuator System Considering Mass/spring System)

  • 정상섭;장석명
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권7호
    • /
    • pp.370-378
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and spring is one approach to safeguarding the structure against excessive vibrations. In this paper, the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are two types of vibration control system, active mass damper(AMD) and hybrid mass damper(HMD). AMD consists of the moving coil LOA with mass only The LOA of HMD with mass and spring is composed of the fixed coil and the movable permanent magnet(PM) field part. The PM field part composed magnet modules and iron coke, is the damper marts itself. We Present the motional resistance and reactance of mass/spring system and the system impedance of AMD and HMD according to the frequency.

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

Dynamic characteristics of hybrid tower of cable-stayed bridges

  • Abdel Raheem, Shehata E.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.803-824
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of the tower with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping, such as steel/concrete mixed structure - supporting soil coupled system. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. An analytical approach capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to define and investigate dynamic characteristics of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified approximation of two lumped masses to investigate the structure irregularity effects including damping of different material, mass ratio, frequency ratio on dynamic characteristics and modal damping; the second approach employs a detailed numerical step-by step integration procedure in which the damping matrices of the upper and the lower substructures are modeled with the Rayleigh damping formulation.

중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 민감도 (Natural Frequency and Mode Shape Sensitivities of Damped Systems with Multiple Natural Frequencies)

  • 최강민;고만기;이인원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.117-124
    • /
    • 2001
  • A simplified method fur the eigenpair sensitivities of damped system with multiple eigenvalues is presented. This approach employs a reduced equation to determine the sensitivities of eigenpairs of the damped vibratory systems with multiple natural frequencies. In the proposed method, adjacent eigenvectors and orthonormal conditions are used to compute an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m the number of multiplicity of multiple natural frequencies. The proposed method is an improved Lee and Jung's method which was developed previously. Two equations are used to find eigenvalue derivatives and eigenvector derivatives in Lee and Jung's method. A significant advantage of this approach over Lee and Jung's method is that one algebraic equation newly developed is enough to compute such eigenvalue derivatives and eigenvector derivatives. This method can be consistently applied to both structural systems with structural design parameters and mechanical systems with lumped design parameters. To demonstrate the theory of the proposed method and its possibilities in the case of multiple eigenvalues, the finite element model of the cantilever beam and 5-DOF mechanical system in the case of a non-proportionally damped system are considered as numerical examples. The design parameter of the cantilever beam is its height. and that of the 5-DOF mechanical system is a spring.

  • PDF

Common Model EMI Prediction in Motor Drive System for Electric Vehicle Application

  • Yang, Yong-Ming;Peng, He-Meng;Wang, Quan-Di
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.205-215
    • /
    • 2015
  • Common mode (CM) conducted interference are predicted and compared with experiments in a motor drive system of Electric vehicles in this study. The prediction model considers each part as an equivalent circuit model which is represented by lumped parameters and proposes the parameter extraction method. For the modeling of the inverter, a concentrated and equivalent method is used to process synthetically the CM interference source and the stray capacitance. For the parameter extraction in the power line model, a computation method that combines analytical method and finite element method is used. The modeling of the motor is based on measured date of the impedance and vector fitting technique. It is shown that the parasitic currents and interference voltage in the system can be simulated in the different parts of the prediction model in the conducted frequency range (150 kHz-30 MHz). Experiments have successfully confirmed that the approach is effective.

혈관계 시스템 모델과 CFD의 결합을 통한 관상동맥 내 혈류의 수치적 해석 (Numerical analysis of the blood flow in coronary artery combining CFD method with the vascular system modeling)

  • 심은보;박명수;고형종;김경훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.152-157
    • /
    • 1999
  • For the simulation of the blood flow in coronary artery, the system modeling of coronary hemodynamics is combined with CFD technique. The blood flow in coronary artery interacts with the global coronary circulation. Especially in case of the coronary artery with stenosis, the interaction plays an important role in the hemodynamics of the circulation. In this study we present a combined numerical approach using both the CFD technique for flow simulation and the global system model of coronary circulation. We use a lumped parameter model for the global simulation of coronary circulation whereas the finite element method is employed to compute the viscous flow field in stenosed coronary artery, The time variation of the pressure drop due to stenosis is obtained from the proposed numerical method. Numerical results shows that the flow resistance and pressure drop due to stenosis has a relatively large value in systole.

  • PDF

매트릭스 컨버터를 이용한 유도전동기 구동장치의 기준모델 적응제어기법 기반의 강인한 센서리스 제어 (Robust Sensorless Control for Induction Motor Drives Fed by a Matrix Converter with Model Reference Adaptive Control)

  • 심경훈;허성회;이교범
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.610-616
    • /
    • 2008
  • This paper presents a new robust sensorless control system for high performance induction motor drives fed by a matrix converter with variable structure. The lumped disturbances such as parameter variation and load disturbance of the system are estimated by a variable structure approach based on model reference adaptive scheme. A Reduced Order Extended Luenberger Observer(ROELO) is also employed to bring better responses at the low speed operation. Experimental results are shown to illustrate the performance of the proposed system.

2자유도 채터진동의 특성에 관한 연구 (A study on the chatter vibration of two degree of freedom systems)

  • 김정석;강명창;김병룡
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.216-226
    • /
    • 1993
  • Three dimensional cutting is considered as an equivalent orthogonal cutting through the plane containing both the cutting velocity vector and the chip flow velocity vector in dynamic cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static cutting. Particular attention is paid to the energy supplied to the vibratory system of cutting tool with two degree of freedom. In this approach, the phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angle of the fluctuating cutting force is considered in point of stability limits. Chatter vibration can be effectively suppressed by relatively increasing the spring constant and the damping coefficient of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theoretical value and experimental results.

  • PDF