• Title/Summary/Keyword: lumped element

Search Result 227, Processing Time 0.027 seconds

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.

마이크로파 응용을 위한 고온초전도 필터 서브-시스템

  • 강광용;김현탁;곽민환
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.20-40
    • /
    • 2003
  • Since unloaded Q-value of a high-temperature superconductor(HTS) filter is very high, a bandpass filter(BPF) and a lowpass filter(LPF) with an increase of pole numbers can be fabricated without an increase of an insertion loss(IL) ; recently a 70-pole BPF is developed in USA. They have an abrupt skirt property and an excellent attenuation level for out-of band. Moreover, they can be miniaturized when lumped element resonators or the slow-wave characteristic are used. Technology of fabricating a HTS epitaxial film as well as a film of a 4 inch area also makes the planar type filter with a various structure and an enhanced power handling capability possible. Recently, the HTS filter subsystems composed of a planar-type HTS filters, a GaAs-based LNA and a mini-cryocooler are developed. The extended receiver front- end subsystems for mobile radio communications decrease the noise-figure level of the communication system and the frequency interference interacted adjacent bands, and increase the efficiency of frequency and the capacity of communication system. In this paper, theory for developing the HTS filter, its kinds, its design rules, its characteristics are reviewed. The feature of the research and market trends related to the HTS filter systems for the receiver front-end subsystem of mobile base station are surveyed.

A Study on 3[kW] PMA-RSG Optimal Design for Mobile Power Supply (이동형 전원장치용 3[kW] PMA-RSG의 최적 설계에 대한 연구)

  • Baik, Jei-Hoon;Toliyat, Hamid A.;Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.109-117
    • /
    • 2009
  • In this paper, an analytical model using equivalent magnetic circuits for the PMA-SynRG is presented. The lumped parameter model (LPM) is developed from machine geometry, stator winding and machine operating specifications. By the LPM, magnetic saturation of rotor bridges is incorporated into model and it provides effective means of predicting machine performance for a given machine geometry. The LPM is not as accurate as finite element analysis but the equivalent magnetic circuits provide fast means of analyzing electromagnetic characteristics of PMa-SynRG. It is the main advantage to find the initial design and optimum design. The initial design of PMa_RSG is performed by LPM model and FEM analysis, and the final PMA-RSG design is optimized and identified by FEM analysis considering actual machine design. The linear LPM and the nonlinear LPM are programmed using MATLAB and all of machine parameters are calculated very quickly. To verify justification of the proposed design of PMa-RSM, back-EMF is measured.

Numerical Dispersion and Its Control for 1-D Finite Element Simulation of Stress Wave Propagation (응력파 전파 수치모의를 위한 일차원 유한요소모형의 분산 특성 및 제어)

  • 이종세;유한규;윤성범
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • With an aim at eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based one-dimensional finite element model are analyzed and some dispersion control scheme are proposed in this paper The dispersion analyses are carried out for two types of mass matrix, namely the consistent and the lumped mass matrices. Based on the finding of the analyses, dispersion correction techniques are developed for both the implicit and explicit schemes. For the implicit scheme, either the weighting factor for the spatial derivatives of each time level or the lumping coefficient for mass matrix is adjusted to minimize the numerical dispersion. In the case of the explicit scheme an artificial dispersion term is introduced in the governing equation. The validity of the dispersion correction techniques proposed in this study is demonstrated by comparing the numerical solutions obtained using the Present techniques with the analytical ones.

3D FEM analysis of earthquake induced pounding responses between asymmetric buildings

  • Bi, Kaiming;Hao, Hong;Sun, Zhiguo
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.377-386
    • /
    • 2017
  • Earthquake-induced pounding damages to building structures were repeatedly observed in many previous major earthquakes. Extensive researches have been carried out in this field. Previous studies mainly focused on the regular shaped buildings and each building was normally simplified as a single-degree-of-freedom (SDOF) system or a multi-degree-of-freedom (MDOF) system by assuming the masses of the building lumped at the floor levels. The researches on the pounding responses between irregular asymmetric buildings are rare. For the asymmetric buildings subjected to earthquake loading, torsional vibration modes of the structures are excited, which in turn may significantly change the structural responses. Moreover, contact element was normally used to consider the pounding phenomenon in previous studies, which may result in inaccurate estimations of the structural responses since this method is based on the point-to-point pounding assumption with the predetermined pounding locations. In reality, poundings may take place between any locations. In other words, the pounding locations cannot be predefined. To more realistically consider the arbitrary poundings between asymmetric structures, detailed three-dimensional (3D) finite element models (FEM) and arbitrary pounding algorithm are necessary. This paper carries out numerical simulations on the pounding responses between a symmetric rectangular-shaped building and an asymmetric L-shaped building by using the explicit finite element code LS-DYNA. The detailed 3D FEMs are developed and arbitrary 3D pounding locations between these two buildings under bi-directional earthquake ground motions are investigated. Special attention is paid to the relative locations of two adjacent buildings. The influences of the left-and-right, fore-and-aft relative locations and separation gap between the two buildings on the pounding responses are systematically investigated.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Development of Birdcage Resonator for Various Absorption Regions at 3T (3T MRI에서 흡수영역의 변화에 따른 Birdcage Resonator의 개발)

  • 이정우;최보영;윤성익;이형구;서태석;허순녕
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.54-58
    • /
    • 2004
  • The aim of this study was to develop special birdcage resonators for small objects including the human wrist, hand and small animals, using 3T MRI/MRS. Before substantial development, different types of parameters were arranged, based on theoretical analysis, through lumped element transmission line theory. The primary analysis was peformed with a network analyzer (HP 4195A) and the final experimental analysis was carried out with 3T MRI (Medinus, Korea). The manufactured birdcage resonator is typically composed of 12-element structures to which a low-pass filter is fundamentally applied. The diameter and length of each element of the birdcage resonator were as follows: (1) diameter 12 cm, length of element 22 cm, (2) diameter 15 cm, length of element 22 cm, and (2) diameter 17 cm, length of element 25 cm. Copper tape with a width of 1 cm was used for the coils. MRI acquisition parameters were TR=500 ms, TE=17 ms, and Ave=2 for T1-WT images, and TR=4,000 ms, TE=96 ms, and Ave=2 for T2-WT images. The ratio of the samples diameter to the birdcage resonators diameter was approximately 55%, 63% and 70%, respectively, for the three elements. This study determined that the best image quality and S/N ratio were obtained when the ratio of the object's diameter was approximately 50∼80%. A general theoretical analysis of the birdcage coil differs in many respects from the experimental results which were influenced by many factors that were not considering when the general theoretical analysis of the birdcage coil was peformed. The induced resistance may be considered as part of the resistive loss if the quantitative value can be determined using a radiation resistance approach.

  • PDF

Thin Film Bulk Acoustic Resonator(FBAR) Bandpass Filter Design Technique Using Genetic Algorithm (유전자알고리즘을 이용한 FBAR RF 대역통과여파기 설계기법)

  • 이정흠;김형동
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.3
    • /
    • pp.10-17
    • /
    • 2003
  • In this paper, genetic algorithm (GA)-based Thin Film Bulk Acoustic Resonator (FBAR) RF filter design technique is proposed. Since the BVD(Butterworth-Van Dyke) lumped element model is valid only around the resonance, FBAR filter design technique based on BVD circuit has an approximate error. Instead of using BVD model, optimizing filter design method utilizes an analytical electrical impedance equation of FBAR. The geometry of FBAR such as thickness of the piezoelectric layer and area which significantly affect the filter response is optimized by GA. US-PCS Rx Bandpass filter obtained by the proposed technique shows a better response comparing with the typical and BVD-based filter.

Analysis of Acoustic Back Scattering from Bubble Columns in Water (수중 기포기둥에 의한 음파의 후방 산란특성 분석)

  • Park, K.-J.;Yoon, S.-W.;Roy, R.A.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.36-43
    • /
    • 1991
  • Acoustic backscattering from a buble column in water was studied theoretically and experimentally. For theoretical analysis a general scattering theory was used by assuming the bubble column to be lumped element scatterer which can be characterized by its shape, void fraction and dimensions. When the void fraction is less than 1% and the incident frequency is higher than individual bubble resonance frequencies, the experimental results show that the acoustic backscattering from a bubble column depends mainly on the void fraction rather than the individual bubble sizes. It was also theoretically and experimentally observed that the acoustic backscattering levels were increased and their peaks moved to the lower frequency regin by raising the void fraction of bubble column.

  • PDF

Design, Fabrication and Measurement of a Compact, Frequency Reconfigurable, Modified T-shape Planar Antenna for Portable Applications

  • Iqbal, Amjad;Ullah, Sadiq;Naeem, Umair;Basir, Abdul;Ali, Usman
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1611-1618
    • /
    • 2017
  • This paper presents a compact reconfigurable printed monopole antenna, operating in three different frequency bands (2.45 GHz, 3 GHz and 5.2 GHz), depending upon the state of the lumped element switch. The proposed multiband reconfigurable antenna is designed and fabricated on a 1.6 mm thicker FR-4 substrate having a relative permittivity of 4.4. When the switch is turned ON, the antenna operates in a dual band frequency mode, i.e. WiFi at 2.45 GHz (2.06-3.14 GHz) and WLAN at 5.4 GHz (5.11-5.66 GHz). When the switch is turned OFF, it operates only at 3 GHz (2.44-3.66 GHz). The antenna radiates omni-directionally in these bands with an adequate, bandwidth (>10 %), efficiency (>90 %), gain (>1.2 dB), directivity (>1.7 dBi) and VSWR (<2). The fabricated antenna is tested in the laboratory to validate the simulated results. The antenna, due to its reasonably compact size ($39{\times}37mm^2$), can be used in portable devices such as laptops and iPads.