• Title/Summary/Keyword: luminous efficiency

Search Result 385, Processing Time 0.027 seconds

High luminous efficiency Mercury-free flat light source for LCD BLU

  • Lee, Ju-Kwang;Oh, Byung-Joo;Jung, Jae-Chul;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1161-1164
    • /
    • 2005
  • A Mercury-free, flat light source which shows high luminance and luminous efficiency simultaneously has been developed. An electrodeless, dielectric barrier discharge is used to generate the plasma using Ne-Xe mixture gas of relatively low gas pressure of a few tens torr in a 4.1 inch diagonal size of flat panel. The basic properties of the long gap glow discharge and its accompanying instabilities, which prevents us from having high luminous efficiency discharge have been analyzed. A new structure and optimized driving methods have been used to generate a glow discharge which shows a wide voltage margin of a few hundred volts. The luminous efficiency and luminance could be 110 lm/W at $1300\;cd/m^2$ and 50 lm/W at $5500\;cd/m^2$.

  • PDF

Study on Improving the luminous Efficiency of AC PDPs using the Dual Mode Discharge Electrode Structure Having Short-Gap and Long-Gap Discharge (Short-gap과 Long-gap의 이중 방전 전극 구조를 갖는 AC형 플라즈마 표시기의 효율 향상에 대한 연구)

  • 신범재;김태준;이주광;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.529-535
    • /
    • 2003
  • In this paper, we presents the characteristics of the new electrode structure in an AC Plasma Display Panel(PDP) that can generate dual mode discharges with a combination of short-gap and long-gap discharges. The experiment results show that the discharge voltage of the new electrode structure is mainly determined by short-gap discharge and the luminous efficiency is improved by 20% compared with the conventional electrode structure. The improvement of luminous efficiency is mainly caused by higher VUV generation and broader distribution from Ole ICCD camera measurements.

Effect of Hump Electrode on the Discharge Voltage of ac PDP with Fence Electrode (Fence 전극을 가진 ac PDP의 방전전압특성에 미치는 돌기 전극의 영향)

  • Dong, Eun-Joo;Ok, Jung-Woo;Yoon, Cho-Rom;Lee, Hae-June;Lee, Ho-Joon;Park, Chung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.261-267
    • /
    • 2008
  • One of the most important issues in fence-type PDP is low luminance and luminous efficiency. To improve luminance and luminous efficiency, new sustain electrode structure which contains long discharge gap is necessary. However, it causes rise of firing voltage. In this paper, a new fence electrode structure is proposed in order to solve these problems. To drop the firing voltage, tow hump shaped electrodes is added on the main discharge electrode, and distance between two humps is controlled. The experimental results show that the test panel with the narrow horizontal gap(40um) between two humps shows low firing voltage by 17V compared with 80um gap in spit of similar luminance and luminous efficiency.

Auxiliary Address Pulse Driving Scheme for Improving Luminance and Luminous Efficiency in 42-inch WVGA Plasma Display Panel

  • Park, Ki-Hyung;Lee, Eun-Cheol;Cho, Ki-Duck;Tae, Heung-Sik
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • The effects of an auxiliary address pulse driving scheme, in which an auxiliary short pulse is applied to the address electrode during a sustain-period, were examined under the various image patterns of the 42-inch WVGA ac-PDP. When the auxiliary address pulse driving scheme was applied, the luminance of the red, green and blue cells were measured respectively. And the luminance, luminous efficiency, and current were measured under the full-white pattern of the 42-inch ac-PDP. As a result, the luminance of blue cells was improved approximately by 17 %, whereas the luminous efficiency of the full-white pattern was improved approximately by 34 % without a misfiring discharge in comparison with conventional driving scheme.

A study on the Improvement of the luminous efficiency with new sustaining electrode structurs in ac-PDPs (새로운 유지전극 구조에 의한 ac-PDP 에서의 효율 개선에 관한 연구)

  • Lee, Jae-Young;Shin, Joong-Hong;Park, Chung-Hoo;Cho, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1818-1820
    • /
    • 2000
  • Due to recent technology advances, needs for flat panel displays, plasma display panels(PDPs) whose advantages are simple structure, high resolution, wide viewing angle is increasingly expected to be the first flat panel of large screen, walt hanging TVs. But the luminance and luminous efficiency of color PDP is net up to the level of a CRT. So, New electrode shape which is different from the conventional electrode has to propose to improve the luminance and luminous efficiency. In this paper, we suggested new shaped electrodes. In new shaped electrode, the discharge current was reduced compared with conventional type by reducing the unnecessary diffusion loss near the barrier rib. However, the luminance was nearly the same as conventional type. So, the luminous efficiency improved about 35%.

  • PDF

The Optimum Phosphor Thickness to Obtain the Highest Luminance and Luminous Efficiency in ac PDP

  • Heo, Jeong-Eun;Kim, Young-Kee;Park, Hun-Gun;Park, Chung-Hoo
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • Plasma display panel(PDP) have gained great attention due to their potential application to large-area display including HDTV. The luminance and luminous efficiency of PDP, however, should be improved to realize this goal. In this study, we examined experimentally the effects of phosphor thickness and discharge gap on the luminance and luminous efficiency of ac PDP. For the rib height of 110 ${\mu}m$, whereas the optimum phosphor thickness was about 30 ${\mu}m$. The optimum thickness of green phosphor was about 50 ${\mu}m$ for the rib height of $120{\sim}160\;{\mu}m$.

  • PDF

The Race for TVs with Higher Luminous Efficiency

  • Weber, Larry F.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.3-10
    • /
    • 2005
  • The major display contenders: LCDs, CRTs, PDPs, projection displays, FEDs, SEDs and OLEDs are each examined in terms of the most critical display characteristic, the luminous efficiency. Each technology has great opportunity for improvement, but which one will win the race?

  • PDF

Influence of Sustain Pulse-width on Electrical Characteristics and Luminous Efficiency in Surface Discharge of AC-PDP

  • Jeong, Yong-Whan;Jeoung, Jin-Man;Choi, Eun-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.276-279
    • /
    • 2005
  • Influences of sustain pulse-width on electrical characteristics and luminous efficiency are experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and fixed rising time of 300 ns has been used in the experiment. It is found that the memory coefficient is significantly increased at the critical pulse-width. And the wall charges and wall voltages as well as capacitances are experimentally measured by Q- V analysis method along with the voltage margin relation, in terms of the sustain pulse-width in the range of $1{\mu}s$ to $5{\mu}s$ under driving frequency of 10 kHz to 180 kHz. And the luminous efficiency is also experimentally investigated in above range of sustain pulse-width with driving frequency of 10 kHz to 180 kHz. It is noted that the luminous efficiency for 10 kHz and 180 kHz are 1.29 1m/W and 0.68 1m/W respectively, since the power consumption for 10 kHz is much less than that for 180 kHz. It has been concluded that the optimal sustain pulse-width is in the range of $2.5 {\~}4.5{\mu}s$ under driving frequency range of 10 kHz and 60 kHz, and in the range of $1.5 {\~} 2.5{\mu}s$ under driving frequency range of 120 kHz and 180 kHz based on observation of memory coefficient, and wall voltage as well as luminous efficiency.

A Study on the Relationships Between the Electrooptical Characteristics and Working Gas Xe+Ne+He (AC PDP의 전기광학적 특성과 동작 Gas $Xe_x+Ne_y+He_{1-y)$의 상관관계에 관한 연구)

  • Park, Chung-Hoo;Yoo, Su-Bok;Lee, Hae-June;Lee, Ho-Jun;Kim, Jae-Sung;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1619-1625
    • /
    • 2007
  • The gas mixture ratio of PDP discharges plays a very important role in the discharge characteristics of a plasma display panel. The increase of Xe contents results in the increases of luminance and luminous efficiency while it also results in the increase of the breakdown voltage. The addition of He gas increases the brightness and the luminous efficiency. Especially, the luminance and the luminous efficiency have a maximum value when the partial pressure of He is about 10% of the total pressure for a standard plasma display panel with Xe fraction of $10\sim30%$.

Properties of high efficiency 2-${\lambda}$ white organic light emitting diode (고 효율 2파장 백색 유기 발광 소자의 발광 특성)

  • Lee, Oun-Gyu;Oh, Young-Jun;Ko, Young-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.324-325
    • /
    • 2006
  • In order to develop high efficiency white organic light-emitting diodes (OLEDs), OLED devices consisted of red and blue emitting layers (EMLs) were fabricated and the effect of respective layer thickness and the order of layer stacking on the luminous efficiency was evaluated Red/blue structure showed higher efficiency than blue/red, due to the higher exiton formation. In the blue layer of red/blue structure. However, the efficiency of the red/blue significantly depended on the thickness of the red layer, whereas the thickness of the blue layer was not affect so much. The optimum thickness of the red layer was 20 ${\AA}$, where the luminous and power efficiencies were 155 cd/A and 10.51 lm/W at 1000~3000$cd/m^2$ respectively and the maximum luminance was about 80,000 $cd/m^2$.

  • PDF