• Title/Summary/Keyword: luminescence spectrum

Search Result 98, Processing Time 0.024 seconds

Spectroscopic Characteristics of Gemstones with Color Change Effect (변색 효과 보석들의 분광학적 특성)

  • Ahn, Yong-Kil;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • The luminescence and fluorescence were investigated by photoluminescence spectroscopy for six gemstones which exhibit color change effect. The shape of luminescence peaks appears different when observed by a photoluminescence spectroscopewith a 514 nm Ar laser source. However, it was not possible to observe the difference in the spectra between the natural and synthetic origins for the same type of gemstones. It was found that the photoluminescence spectrum was related to the crystal structure of the stones. Photoluminescence spectra using a 325 nm He-Cd source reveal that fluorescence is relatively strong for synthetic alexandrite, synthetic color change sapphire and natural alexandrite comparing to the rest of gemstones examined.

Characteristics on EL Properties and Phase Transformation Caused by Artificial Defects on the ZnS:Cu Blue Phosphor for ACPEL (ACPEL용 ZnS:Cu 청색 형광체의 인위적 결함 형성에 따른 결정 상 변화 및 EL 특성)

  • 이명진;전애경;이지영;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.406-409
    • /
    • 2004
  • A blue phosphor(ZnS:Cu) is manufactured by solid state reaction for ACPEL(AC powder EL). The effect of artificial defect on phosphor surface on the ZnO phase conversion and resulting luminescence have been studied. It was found that ZnS:Cu could converse to cubic phase more easily due to the formation of artificial defect on 1st fired phosphor by ball-milling process, resulting in improvement of luminescence of phosphor phosphors under the driven EL condition. We found out an optimized ball-mill condition through considering effect of each ball-mill conditions such as milling time and milling rpm on defect. Also we determined relationship between emission luminescence and phase of phosphor based on analyses of crystal structures of phosphors. A significant improvement above 30% was observed in electroluminescence by the artificial defect on ZnS:Cu phosphors compared to non-treated phosphors.

PL characteristics of silicon-nanocrystals as a function of temperature (온도에 따른 실리콘 나노결정 PL 특성)

  • Kim, Kwang-Hee;Kim, Kwang-Il;Kwon, Young-Kyu;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.93-93
    • /
    • 2003
  • Photoluminescence(PL) properties of Silicon nanocrystals (nc-Si) as a function of temperature is reported to consider the mechanism of PL. Nc-Si has been made by $Si^+$ ion-implantation into thermal $SiO_2$ and subsequent annealing. And after gold had been diffused at the same samples above, the resultant PL spectra has been compared to the PL spectra from the non-gold doped nc-Si. PL peak energy variation from nc-Si is same with the variation of energy bandgap of bulk silicon as temperature changes from 6 K to room temperature. This result may mean nc-Si is still indirect transition material like bulk silicon. Gold doped nc-Si reveals short peak wavelength of PL spectrum than gold undoped one. PL peak shift through gold doing process shows clearly the PL mechanism is not from defect or interface states. PL intensity increases from 6K to a certain temperature and then decrease to room temperature. This characteristic with temperature shows that phonon have a role for the luminescence as theory explains that electron and hole can be recombined radiatively by phonon's assist in nc-Si, which is almost impossible in bulk silicon. Therefore luminescence is observed in nc-Si constructed less than a few of unit cell and the peak energy of luminescence can be higher than the bulk bandgap energy by the bandgap widening effect occurs in nanostructure.

  • PDF

Preparation and Luminescent Properties of LaPO4:Re (Re=Er, Yb) Nanoparticles (희토류 이온(Er/Yb)이 도핑된 LaPO4 나노입자의 합성과 발광특성)

  • Oh Jae-Suk;Lee Tack-Hyuck;Seok Sang-Il;Jung Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.270-275
    • /
    • 2004
  • Due to the luminescence by$ Er ^{ 3+}$ activator, Er-doped $LaPO_4$ powders can be applied for optical amplification materials. In this study, $LaPO_4$:Er nanoparticles were synthesized in solution system using a high-boiling coordinating solvent and their properties were investigated through various spectroscopic techniques. The nanoparticles were to take a single phase of monazite structure by a X-ray diffraction analysis and to have the 5-6 nm of particles size with narrow size distribution by a TEM. And it was confirmed by the EA and FT-IR analyses that the surfaces of nanoparticles are coordinated with the solvent molecules, which will possibly keep from agglomerating between LaPO$_4$:Er nanoparticles. In the emission spectrum of $LaPO_4$:Er nanoparticle at NIR region, on the other hand, it was measured that the emission intensity is very weak, which is due to the transition from $^4$$I_{(13/2)}$ to $^4$$I_{(15/2)}$ of $Er^{3+ }$ion. It was interpreted that the weak luminescence of $LaPO_4$:Er is originated from the hydroxyl groups adsorbed on the surfaces of the nanoparticles, because OH group acts as an efficient quencher for the $^4$$I_{(13/2)}$ \longrightarrow $^4$$I_{(15/2)}$ emission of $Er^{3+}$ activator. But the co-doping of Yb$^{3+}$ as a sensitizer in this nanoparticle results in the increase of the emission intensity at 1539 nm due to the effective energy transfer from $Yb^{3+}$ to $Er^{3+}$ . In addition, the synthesized nanoparticles exhibited good dispersibility with some polymers and effective luminescence at NIR region.n.

Luminescence Properties of Ba3Si6O12N2:Eu2+ Green Phosphor

  • Luong, Van Duong;Doan, Dinh Phuong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.211-217
    • /
    • 2015
  • To fabricate white LED having a high color rendering index value, red color phosphor mixed with the green color phosphor together in the blue chip, namely the blue chips with RG phosphors packaging is most favorable for high power white LEDs. In our previous papers, we reported on successful syntheses of $Sr_{2-}$ $Si_5N_8:Eu^{2+}$ and $CaAlSiN_3$ phosphors for red phosphor. In this work, for high power green phosphor, greenemitting ternary nitride $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphor was synthesized in a high frequency induction furnace under $N_2$ gas atmosphere at temperatures up to $1400^{\circ}C$ using $EuF_3$ as a raw material for $Eu^{2+}$ dopant. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 250 - 500 nm, namely from UV to blue region with distinct enhanced emission spectrum peaking at ${\approx}530nm$.

Comparative Study of the Effective Dose from Panoramic Radiography in Dentistry Measured Using a Radiophotoluminescent Glass Dosimeter and an Optically Stimulated Luminescence Detector

  • Lee, Kyeong Hee;Kim, Myeong Seong;Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1377-1384
    • /
    • 2018
  • Accurate measurement of the absorbed dose and the effective dose is required in dental panoramic radiography involving relatively low energy with a rotational X-ray tube system using long exposures. To determine the effectiveness of measuring the irradiation by using passive dosimetry, we compared the entrance skin doses by using a radiophotoluminescent glass dosimeter (RPL) and an optically stimulated luminescence detector (OSL) in a phantom model consisting of nine and 31 transverse sections. The parameters of the panoramic device were set to 80 kV, 4 mA, and 12 s in the standard program mode. The X-ray spectrum was applied in the same manner as the panoramic dose by using the SpekCalc Software. The results indicated a mass attenuation coefficient of $0.008226cm^2/g$, and an effective energy of 34 keV. The equivalent dose between the RPL and the OSL was calculated based on a product of the absorbed doses. The density of the aluminum attenuators was $2.699g/cm^3$. During the panoramic examination, tissue absorption doses with regard to the RPL were a surface dose of $75.33{\mu}Gy$ and a depth dose of $71.77{\mu}Gy$, those with regard to the OSL were surface dose of $9.2{\mu}Gy$ a depth dose of $70.39{\mu}Gy$ and a mean dose of $74.79{\mu}Gy$. The effective dose based on the International Commission on Radiological Protection Publication 103 tissue weighting factor for the RPL were $0.742{\mu}Sv$, $8.9{\mu}Sv$, $2.96{\mu}Sv$ and those for the OSL were $0.754{\mu}Sv$, $9.05{\mu}Sv$, and $3.018{\mu}Sv$ in the parotid and sublingual glands, orbit, and thyroid gland, respectively. The RPL was more effective than the OSL for measuring the absorbed radiation dose in low-energy systems with a rotational X-ray tube.

Sequence Dependent Binding Modes of the ΔΔ- and ΛΛ-binuclear Ru(II) Complexes to poly[d(G-C)2] and poly[d(A-T)2]

  • Chitrapriya, Nataraj;Kim, Raeyeong;Jang, Yoon Jung;Cho, Dae Won;Han, Sung Wook;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2117-2124
    • /
    • 2013
  • The binding properties and sequence selectivities of ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ (bip = 4,4'-biphenylene (imidazo [4,4-f][1,10]phenanthroline) complexes with $poly[d(A-T)_2]$ and $poly[d(G-C)_2]$ were investigated using conventional spectroscopic methods. When bound to $poly[d(A-T)_2]$, a large positive circular dichroism (CD) spectrum was induced in absorption region of the bridging moiety for both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes, which suggested that the bridging moiety sits in the minor groove of the polynucleotide. As luminescence intensity increased, decay times became longer and complexes were well-protected from the negatively charged iodide quencher compared to that in the absence of $poly[d(A-T)_2]$. These luminescence measurements indicated that Ru(II) enantiomers were in a less polar environment compared to that in water and supported by minor groove binding. An angle of $45^{\circ}$ between the molecular plane of the bridging moiety of the ${\Delta}{\Delta}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex and the local DNA helix axis calculated from reduced linear dichroism ($LD^r$) spectrum further supported the minor groove binding mode. In the case of ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex, this angle was $55^{\circ}$, suggesting a tilt of DNA stem near the binding site and bridging moiety sit in the minor groove of the $poly[d(A-T)_2]$. In contrast, neither ${\Delta}{\Delta}$-nor ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex produced significant CD or $LD^r$ signal in the absorption region of the bridging moiety. Luminescence measurements revealed that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes were partially accessible to the $I^-$ quencher. Furthermore, decay times became shorter when bis-Ru(II) complexes bound to $poly[d(G-C)_2]$. These observations suggest that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes bind at the surface of $poly[d(G-C)_2]$, probably electrostatically to phosphate group. The results indicate that ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ are able to discriminate between AT and GC base pairs.

A study on the identification of type IIa natural diamonds treated by the HPHT method (HPHT(고온고압)에 의해 처리된 type IIa 천연 다이아몬드의 감별에 관한 연구)

  • 김영출;최현민
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Results from PL and Raman spectroscopic analyses of HPHT (high-pressure high-temperature) treated type IIa diamonds are presented, and these spectral characteristics are compared with those of untreated diamonds of similar color and type. We identify a number of significant changes by 325 nm He/Cd laser excitation. Several peaks are removed completely, including H4, H3 system in HPHT treated diamond. The N3 system, however, increased in emission. Also we can find the behaviour of the nitrogen-vacancy related center N-V centers at 575 and 637.1 nm, as observed with 514 nm Ar ion laser excitation. When these centers are present, the FWHM (full width at half maximum) of 637.1 nm luminescence intensities offers a potential means of separating HPHT-treated from untreated type IIa diamonds. The width of 637.1 nm $(N-V)^-$line measured at the position oi half the peak's height are determine to range from 19.8 to $32.1cm^{-1}$ for HPHT treated diamonds.

Photoluminescence Properties of Red Phosphors Gd1-xVO4:Eux3+ Subjected to Eu3+ Concentration (Eu3+ 농도에 따른 적색 형광체 Gd1-xVO4:Eux3+의 형광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.193-197
    • /
    • 2012
  • $Gd_{1-x}VO_4:{Eu_x}^{3+}$ red phosphors were synthesized with changing the concentration of $Eu^{3+}$ ion by using a solid-state reaction method. The crystal structure, surface morphology, and photoluminescence and photoluminescence excitation properties of the red phosphors were measured by using X-ray diffractometer, field emission-scanning electron microscopy, and florescence spectrometer, respectively. The XRD results showed that the main peak of all the phosphor powders occurs at (200) plane. As for the photoluminescence properties, the maximum excitation spectrum occurred at 306 nm due to the charge transfer band from ${VO_4}^{3-}$ to $Eu^{3+}$ ions and the maximum emission spectrum was the red luminescence peaking at 619 nm when the concentration of $Eu^{3+}$ ion was 0.10 mol.

Optical Properties of Er-implanted GaN (Er 이온 주입된 GaN의 광학적 특성)

  • Son, Chang-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1101-1105
    • /
    • 2005
  • We have investigated the optical properties of Erbium (Er)-implanted GaN by photoluminescence (PL). Various doses of Er ion were implanted on GaN epilayers by ion implantation. Visible green emission lines due to inner 4f shell transitions for $Er^{3+}$ were observed from the PL spectrum of Er-implanted GaN. The emission spectrum consists of two narrow green lines at 537 and 558 nm. The green emission lines are identified as $Er^{3+}$ transitions from the $^{5}H_{11/2}$ and $^{4}S_{3/2}$ levels to the $^{4}I_{15/2}$ ground state. The stronger peaks in the case with the dose of $5{\times}10^{14}cm^{-2}$, together with the relatively higher intensity of the $Er^{3+}$ luminescence in the lower doped sample. It implies that some damage remains in the case with the dose of $1{\times}10^{16}cm^{-2}$. The peak positions of emission lines due to inner 4f shell transitions for $Er^{3+}$ do not change with increasing temperature. It indicates that $Er^{3+}$ related emission depends very little on the ambient temperature.