• Title/Summary/Keyword: luciferase reporter gene assay

Search Result 111, Processing Time 0.022 seconds

Single Nucleotide Polymorphism in the Promoter Region of H1 Histone Family Member N, Testis-specific (H1FNT) and Its Association Study with Male Infertility

  • Yang, Seung-Hee;Lee, Jin-U;Lee, Su-Man
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.201-205
    • /
    • 2010
  • The H1 histone family, member N, testis-specific (H1FNT) is exclusively expressed in the testis, and had its possible role for sperm chromatin formation. The purpose of this study is to investigate any genetic association of H1FNT gene with male infertility, especially at the promoter region. We examined the promoter single nucleotide polymorphisms (SNP) of H1FNT gene which is located within transcription factor binding site for its association with male infertility. The statistical analysis showed that the -1129A>T polymorphism was present at a statistically significance in male infertility (p=0.0059 and 0.0349 for hetero and risk type, respectively). The dual-luciferase promoter assay was performed to examine the polymorphic effect of this promoter SNP by the cloning of promoter region (1700bp fragment) into pGL3-basic vector. In our plasmid based reporter system, there is no big difference between wild and risk type. In conclusion, H1FNT -1129A>T promoter SNP is statistically significant with male infertility, especially with subfertile (non-azoospermia) group. Further analysis of its functional polymorphic effect in vivo may provide the biological significance of testis-specific histone with spermatogenesis.

Effects of the cis-Acting Element in the 3' End of Porcine $\beta$-Casein Gene on the Expression in Mammary Epithelial Cells (돼지 $\beta$-Casein 유전자의 3' 말단 부위의 cis-Acting Element가 유선 상피 세포내의 발현에 미치는 영향)

  • Lee, Hwi-Cheul;Kim, Byoung-Ju;Byun, Sung-June;Lee, Seung-Hoon;Kim, Min-Ji;Chung, Hee Kyoung;Lee, Hyun-Gi;Jo, Su-Jin;Chang, Won-Kyong;Park, Jin-Ki;Lee, Poong-Yeon
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Tissue-specific and temporal regulation of milk protein gene expression is advantageous when creating transgenic animal that produces foreign protein into milk. Gene expression, i.e. protein production, is regulated not only by promoter strength but also mRNA stability. Especially, poly A tail length by polyadenylation affects in vivo and in vitro mRNA stability and translation efficiency of the target gene. In the present study, nucleotide sequence of 3'-UTR was analyzed to evaluate the effects of mRNA stability on the target gene expression. Based on the poly A signal of 3' -untranslated region (UTR), nucleotide sequences of putative cytoplasmic polyadenylation elements (CPEs) and downstream elements (DSEs: U-rich, G-rich, GU-rich) were analyzed and used to construct 15 luciferase reporter vectors. Each vector was transfected to HC11 and porcine mammary gland cell (PMGC) and measured for dual luciferase expression levels after 48 hours of incubation. Luciferase expression was significantly higher in construct #6 (with CPE 2, 3 and DSE 1 of exon 9) and #11 (with CPE 2, 3 and DSE 1, 2 and 3 of exon 9) than construct #1 in the PMGC. These results suggest that expression of target genes in PMGC may be effectively expressed by using the construct #6 and #11 on production of transgenic pig.

The Production of mutant protein by a transcription-based mechanism and in vivo technique for determining transcriptional mutagenesis

  • You, Ho-Jin
    • Proceedings of the PSK Conference
    • /
    • 2001.04a
    • /
    • pp.48-55
    • /
    • 2001
  • When an elongating RNA polymerase encounters DNA damage on the template strand of a transcribed gene it can either be arrested by or be transcribed through the lesion. Lesions that arrest RNA polymerases are thought to be subject to transcription-coupled repair, whereas that damage that is bypassed can cause miscoding, resulting in mutations in the transcript (transcriptional mutagenesis). We have developed a technique using a plasmid-based luciferase reporter assay to determine the extent to which a particular type of DNA base modification is capable of causing transcriptional mutagenesis in vivo. The system uses Escherichia coli strains with different DNA repair backgrounds and is designed to detect phenotypic changes caused by transcriptional mutageneis under nongrowth conditions. In addition, this method is capable of indicating the extent to which a particular DNA repair enzyme (or pathway) suppresses the occurrence of transcriptional mutagenesis. Thus, this technique provides a tool with which the effects of various genes on non-replication-dependent pathways resulting in the generation of mutant proteins can be gauged.

  • PDF

Activation of Antioxidant-Response Element (ARE), Mitogen- Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components during Cell Survival and Death

  • Chen, Chi;Yu, Rong;Owuor, Edward D.;Kong, A.NTony
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2000
  • Green tea polyphenols (GTP) have been demonstrated to suppress tumorigenesis in several chemical-induced animal carcinogenesis models, and predicted as promising chemopreventive agents in human. Recent studies of GTP extracts showed the involvement of mitogen-activated protein kinases (MAPKs) in the regulation of Phase II enzymes gene expression and induction of apoptosis. In the current work we compared the biological actions of five green tea catechins: (1) induction of ARE reporter gene, (2) activation of MAP kinases, (3) cytotoxicity in human hepatoma HepG2-C8 cells, and (4) caspase activation in human cervical squamous carcinoma HeLa cells. For the induction of phase IIgene assay, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) potently induced antioxidant response element (ARE)-mediated luciferase activity, with induction observed at 25 $\mu\textrm{m}$with EGCG. The induction of ARE reporter gene appears to be structurally related to the 3-gallate group. Comparing the activation of MAPK by the five polyphenols, only EGCG showed potent activation of all three MAPKs (ERK, JNK and p38) in a dose- and time-dependent manner, whereas EGC activated ERK and p38. In the concentration range of 25 $\mu\textrm{m}$ to 1 mM, EGCG and ECG strongly suppressed HepG2-ARE-C8 cell-growth. To elucidate the mechanisms of green tea polyphenol-induced apoptosis, we measured the activation of an important cell death protein, caspase-3 induced by EGCG, and found that caspase-3 was activated in a dose- and time-dependent manner. Interestingly, the activation of caspase-3 was a relatively late event (peaked at 16 h), whereas activation of MAPKs was much earlier (peaked at 2 h). It is possible, that at low concentrations of EGCG, activation of MAPK leads to ARE-mediated gene expression including phase II detoxifying enzymes. Whereas at higher concentrations of EGCG, sustained activation of MAPKs such as JNK leads to apoptosis. These mechanisms are currently under investigation in our laboratory. As the most abundant catechin in GTP extract, we found that EGCG potently induced ARE-mediated gene expression, activated MAP kinase pathway, stimulated caspase-3 activity, and induced apoptosis. These mechanisms together with others, may contribute to the overall chemopreventive function of EGCG itself as well as the GTP.

  • PDF

miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1

  • Wang, Wenwen;Teng, Jun;Han, Xu;Zhang, Shen;Zhang, Qin;Tang, Hui
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.957-966
    • /
    • 2021
  • Objective: Ovarian follicular development, which dependent on the proliferation and differentiation of granulosa cells (GCs), is a complex biological process in which miRNA plays an important role. Our previous study showed that miR-458b-5p is associated with ovarian follicular development in chicken. The detailed function and molecular mechanism of miR-458b-5p in GCs is unclear. Methods: The luciferase reporter assay was used to verify the targeting relationship between miR-458b-5p and catenin beta-1 (CTNNB1), which is an important transcriptional regulatory factor of the Wnt/β-catenin pathway. The cell counting kit-8 (CCK-8) assay, flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) labeling were applied to explore the effect of miR-458b-5p on proliferation, cell cycle and apoptosis of chicken GCs. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels. Results: We demonstrated that the expression of miR-458b-5p and CTNNB1 showed the opposite relationship in GCs and theca cells of hierarchical follicles. The luciferase reporter assay confirmed that CTNNB1 is the direct target of miR-458b-5p. Using CCK-8 assay and flow cytometry with PI and Annexin V-FITC labeling, we observed that transfection with the miR-458b-5p mimics significantly reduced proliferation and has no effects on apoptosis of chicken GCs. In addition, miR-458b-5p decreased the mRNA and protein expression of CD44 molecule and matrix metallopeptidase 7, which are the downstream effectors of CTNNB1 in Wnt/β-Catenin pathway and play functional roles in cell proliferation. Conclusion: Taken together, the data indicate that miR-458b-5p regulates ovarian GCs proliferation through Wnt/β-catenin signaling pathway by targeting CTNNB1, suggesting that miR-458b-5p and its target gene CTNNB1 may potentially play a role in chicken ovarian follicular development.

Repression of Cathepsin D Expression in Adipocytes by MicroRNA-145 (지방세포에서 microRNA-145에 의한 Cathepsin D의 발현 제어)

  • Kim, Hyun-Ji;Bae, In-Seon;Seo, Kang-Seok;Kim, Sang Hoon
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.798-803
    • /
    • 2014
  • Cathepsin D (CtsD), an aspartyl peptidase, is involved in apoptosis, resulting in the release of cytochrome C from mitochondria in cells. Here, we investigated microRNA regulation of CtsD expression in 3T3-L1 cells First, we observed the expression of CtsD in cells in response to doxorubicin (Dox). As expected, the level of CtsD mRNA was increased in 3T3-L1 cells exposed to Dox in a dose-dependent manner. Cellular viability of ectopically expressed CtsD cells was also decreased. Next, we used the miRanda program to search for particular microRNA targeting CtsD. MiR-145 was selected as a putative controller for CtsD because miR-145 had a high mirSVR score. In a reporter assay, the luciferase activity of cells containing the CtsD 3'-UTR region was decreased in cells transfected with miR-145 mimic compared to that of a control. The level of CtsD expression was down-regulated in preadipocytes ectopically expressing miR-145 and up-regulated by an miR-145 inhibitor. Cells also suppressed miR-145 expression when exposed to Dox. The miR-145 inhibitor reduced the cellular viability of 3T3-L1 cells. Taken together, these data suggest that miR-145 regulates CtsD-mediated cell death in adipocytes. These findings may have valuable implications concerning the molecular mechanism of CtsD-mediated cell death in obesity, suggesting that CtaD could be a useful therapeutic tool for the prevention and treatment of obesity by regulating fat cell numbers.

Radioiodine Therapy of Liver Cancer Cell Following Tissue Specific Sodium Iodide Symporter Gene Transfer and Assessment of Therapeutic Efficacy with Optical Imaging (조직 특이 발현 Sodium Iodide Symporter 유전자 이입에 의한 방사성옥소 간암세포 치료와 광학영상을 이용한 치료효과 평가)

  • Jang, Byoung-Kuk;Lee, You-La;Lee, Yong-Jin;Ahn, Sohn-Joo;Ryu, Min-Jung;Yoon, Sun-Mi;Lee, Sang-Woo;Yoo, Jeong-Soo;Cho, Je-Yeol;Lee, Jae-Tae;Ahn, Byeong-Cheol
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.383-393
    • /
    • 2008
  • Purpose: Cancer specific killing can be achieved by therapeutic gene activated by cancer specific promotor. Expression of sodium iodide symporter (NIS) gene causes transportation and concentration of iodide into the cell, therefore radioiodine treatment after NIS gene transfer to cancer cell could be a form of radionuclide gene therapy. luciferase (Luc) gene transfected cancer cell can be monitored by in vivo optical imaging after D-luciferin injection. Aims of the study are to make vector with both therapeutic NIS gene driven by AFP promoter and reporter Luc gene driven by CMV promoter, to perform hepatocellular carcinoma specific radiodiodine gene therapy by the vector, and assessment of the therapy effect by optical imaging using luciferase expression. Materials and Methods: A Vector with AFP promoter driven NIS gene and CMV promoter driven Luc gene (AFP-NIS-CMV-Luc) was constructed. Liver cancer cell (HepG2, Huh-7) and non liver cancer cell (HCT-15) were transfected with the vector using liposome. Expression of the NIS gene at mRNA level was elucidated by RT-PCR. Radioiodide uptake, perchlorate blockade, and washout tests were performed and bioluminescence also measured by luminometer in these cells. In vitro clonogenic assay with 1-131 was performed. In vivo nuclear imaging was obtained with gamma camera after 1-131 intraperitoneal injection. Results: A Vector with AFP-NIS-CMV-Luc was constructed and successfully transfected into HepG2, Huh-7 and HCT-15 cells. HepG2 and Huh-7 cells with AFP-NIS-CMV-Luc gene showed higher iodide uptake than non transfected cells and the higher iodide uptake was totally blocked by addition of perchlorate. HCT-15 cell did not showed any change of iodide uptake by the gene transfection. Transfected cells had higher light output than control cells. In vitro clonogenic assay, transfected HepG2 and Huh-7 cells showed lower colony count than non transfected HepG2 and Huh-7 cells, but transfected HCT-15 cell did not showed any difference than non transfected HCT-15 cell. Number of Huh-7 cells with AFP-NIS-CMV-Luc gene transfection was positively correlated with radioidine accumulation and luciferase activity. In vivo nuclear imaging with 1-131 was successful in AFP-NIS-CMV-Luc gene transfected Huh-7 cell xenograft on nude mouse. Conclusion: A Vector with AFP promoter driven NIS and CMV promoter driven Luc gene was constructed. Transfection of the vector showed liver cancer cell specific enhancement of 1-131 cytotoxicity by AFP promoter, and the effect of the radioiodine therapy can be successfully assessed by non-invasive luminescence measurement.

miRNA-183 Suppresses Apoptosis and Promotes Proliferation in Esophageal Cancer by Targeting PDCD4

  • Yang, Miao;Liu, Ran;Li, Xiajun;Liao, Juan;Pu, Yuepu;Pan, Enchun;Yin, Lihong;Wang, Yi
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.873-880
    • /
    • 2014
  • In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA micro-array was applied to determine the genes that were regulated directly or indirectly by miR-183. 3'UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3'UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3'UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.

Transcriptional activation of pref-1 by E2F1 in 3T3 L1 cells

  • Shen, Yan-Nan;Kim, Yoon-Mo;Yun, Cheol-Heui;Moon, Yang-Soo;Kim, Sang-Hoon
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.691-696
    • /
    • 2009
  • The E2F gene family appears to regulate the proliferation and differentiation of events that are required for adipogenesis. Pref-1 is a transmembrane protein that inhibits adipocyte differentiation in 3T3-L1 cells. In this study, we found that the expression of pref-1 is regulated by the transcription factor E2F1. The expression of pref-1 and E2F1 was strongly induced in preadipocytes and at the late differentiation stage. Using luciferase reporter assay, ChIP assay and EMSA, we found that the -211/-194 region of the pref-1 promoter is essential for the binding of E2F1 as well as E2F1-dependent transcriptional activation. Knockdown of E2F1 reduced both pref-1 promoter activity and the level of pref-1 mRNA. Taken together, our data suggest that transcriptional activation of pref-1 is stimulated by E2F1 protein in adipocytes.

Identification of Endothelial Specific Region in the Intracellular Adhesion Molecule-2 (ICAM2) Promoter of Miniature Pig

  • Jang, Hoon;Jang, Won-Gu;Kim, Dong Un;Kim, Eun-Jung;Hwang, Sung Soo;Oh, Keon Bong;Lee, Jeong-Woong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • The shortage of human organs for transplantation has induced the research on the possibility of using animal as porcine. However, pig to human transplantation as known as xeno-transplantation has major problem as immunorejection. Recently, the solutions of pig to human xenotransplantation are commonly mentioned as having a genetically modification which include alpha 1, 3 galatosyl transferase knockout (GTKO) and immune-suppressing gene transgenic model. Unfortunately, the expression level of transgenic gene is very low activity. Therefore, development of gene overexpression system is the most urgent issue. Also, the tissue specific overexpression system is very important. Because most blood vessels are endothelial cells, establishment of the endothelial-specific promoter is attractive candidates for the introduction of suppressing immunorejection. In this study, we focus the ICAM2 promoter which has endothelial-specific regulatory region. To detect the regulatory region of ICAM2 promoter, we cloned 3.7 kb size mini-pig ICAM2 promoter. We conduct serial deletion of 5' flanking region of mini-pig ICAM2 promoter then selected promoter size as 1 kb, 1.5 kb, 2 kb, 2.5 kb, and 3 kb. To analyze promoter activity, luciferase assay system was conducted among these vectors and compare endothelial activity with epithelial cells. The reporter gene assay revealed that ICAM2 promoter has critical activity in endothelial cells (CPAE) and 1 kb size of ICAM2 promoter activity was significantly increased. Taken together, our studies suggest that mini-pig ICMA2 promoter is endothelial cell specific overexpression promoter and among above all size of promoters, 1 kb size promoter is optimal candidate to overcome the vascular immunorejection in pig to human xenotransplantation.