• Title/Summary/Keyword: lubricity

Search Result 74, Processing Time 0.02 seconds

Development of a Cold Rolling Oil with Lubricity and Mill Cleanness Property (윤활성 및 압연기 청정성을 겸비한 냉간 압연유의 개발)

  • 한석영;송교봉;이준정
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.74-81
    • /
    • 1997
  • The purpose of this study is to develop a cold rolling oil with lubricity and mill cleanness property under the rolling conditions of high reduction ratio and high rolling speed. Six kinds of oil samples were blended. Evaluation of lubricity and anti-seizuro property of the samples were carried out with a laboratory scale rolling mill, where the contact conditions between work roll and strip are very close to actual cold rolling mill. Laboratory evaluation for dispersion, contamination, anti-oil stain property and residual carbon, etc. were carried out with several testers such as longterm circulation tester, Coulter counter and Conradson tester. A new high speed cold rolling oil with good lubricity and mill cleanness property was developed compared with the previously developed rolling oil.

Influence of Base Oils and Extreme Pressure Additives on Lubricity and Anti-Seizure Property of Lubricant in Cold Rolling (기유와 극압제가 압연유의 윤활성 및 내소부성에 미치는 영향)

  • 한석영;송교봉;이준정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1363-1372
    • /
    • 1992
  • The effects on lubricity and the anti-seizure property of lubricant according to base oils and extreme pressure additives of sulfur type and phosphorous type in cold rolling were evaluated by a laboratory scale rolling mill, where the contact conditions between work roll and strip are very close to actual cold rolling mill. The important results were obtained as follows : (1) synthetic oil has better effect on lubricity than tallow, (2) lubricant with extreme pressure additives of sulfur type of phosphorous type has better effect than base oil noly, (3) the more amount of extreme pressure additives is, the better effect on lubricity is, (4) sulfur type has better effect on lubricity than phosphorous type and (6) phosphorous type has better effect on anti-seizure property than sulfur type.

접촉압력을 고려한 R-134a용 냉도기유의 윤활성 평가 연구

  • 나병철;전경진;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.145-151
    • /
    • 1997
  • PAG(Polyalkylene Glycol) and esters are tested with HFC-134a as a refrigeration oil. This investigation enhances the testing method by taking the compressor's environment into account. A testing environment charged with refrigerant gas more closely simulates the conditions of a compressor. The friction coetTicient of the PAG/HFC-134a system is similar to that of the mineral oil/CFC-12 system at operating conditions. Ester oils are preferable at the start & stop condition in the lubricity aspect. PAG shows good lubricity in conditions of extreme contact pressure. Consequently, this test provides reliable results on compressor lubricity of refrigeration oils with HFC-134a. It suggests a methodological way for the proper selection of refrigeration oils that may improve the durability and performance of a compressor.

  • PDF

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Lubricity Evaluation of Gear Oil By SRV Tester (SRV를 사용한 기어유의 윤활성 평가)

  • Yun Hyukchae;Lee Kihun;Lee Myounggu;Cho Wonoh
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.181-184
    • /
    • 2003
  • The Four-Ball Tester has been widely used as a tool to charaterize lubricity for long time. In order to understand more acurate properties of lubricants, more test methods have been developed. Among the test methods, SRV test method was compared to Four-Ball Tester in this paper.

  • PDF

Test for Lubricity Evaluation by Cold Rolling Tribosimulator (냉간압연Tribo-Simulator에 의한 냉간압연유 윤활성 평가시험)

  • Kim Chul-Hee
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.158-163
    • /
    • 2003
  • Several simulation techniques have been developed which are not practical deformation processes but are designed to embody specific tribological aspects. Sliding rolling type friction test machine (Cold rolling tribosimulator) was developed to simulate the tribological phenomena at the roll bite in real mill by laboratory scale. A rolled material is fed at a low speed of Max. 1/20 to that of roll speed, so as to obtain simultaneous plastic deformation in the material during rotation of the rolls in simulator. New cold rolling tribe-simulator is effective for evaluation of the lubricity of lubricant in cold rolling process.

  • PDF

Technology and Application of Hybrid Insulation Film for Electric Magnet Wire (하이브리드 절연필름의 전동기권선 적용 특성 연구)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Phil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.210-211
    • /
    • 2006
  • This study presents the technology and application of hybrid insulation film for electric magnet wire. In order to make the high efficient motor with high space factor, it is necessary to develop a self-lubrication heat-resistant insulation film that can be used when the space factor 70% or more. A key to achieving high windability is to increase the lubricity and bonding strength of vanish, which for a magnet wire generally determines the mechanical scratches characteristics. Effective ways to reduce scratches include improving insulation film prepared by organic and inorganic hybrid synthesis methods.

  • PDF

Study of Alternative Fuel Suitability for Special Antarctic Blend Diesel (남극유 대체연료 적합성 연구)

  • Lim, Young-Kwan;Kim, Ji-Yeon;Kim, Jong-Ryeol;Ha, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.460-466
    • /
    • 2017
  • The common petroleum can make precipitation such as a wax in a polar region due to severely cold weather condition, which can cause problems to fuel supply system. The petroleum product used in the polar region has thus been manufactured and sold suitable for the cold environment. However it is difficult to supply such petroleum products on time since these were mainly supplied abroad. In this article, the original fuel properties were first analyzed in order to find alternative fuel products for polar region. Jet fuel which is excellent cold characteristics was chosen and the fuel properties was tested by adding a constant concentration of lubricant additives to the jet fuel. As a result, the lubricant additive R621 showed the best lubricity, and adding 1000 mg/L of R621 content to the jet fuel was sufficient to enhance the lubricity. We envision that the jet fuel added 1000 mg/L of R621A can be suitable for alternative special antarctic blend diesel (SAB) in an severe polar environment.

Synthesis of Vegetable-based Alkanol Amides for Improving Lubricating Properties of Diesel Fuel (경유의 윤활 성능 향상을 위한 식물유 기반 알칸올 아마이드의 합성)

  • Yuk, Jung-Suk;Kim, Young-Wun;Yoo, Seung-Hyun;Chung, Keun-Wo;Kim, Nam-Kyun;Lim, Dae-Jae
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.421-427
    • /
    • 2012
  • To improve the lubricity of ultra low sulfur diesel, vegetable oil-based alkanol amide derivatives were prepared and their lubricity properties were studied. To synthesize the alkanol amides, we conducted the amidation reaction of diethaolamine High Frequency Reciprocating Rig (HFRR) and the fatty acid methyl esters, obtained by the continuous transesterification of methanol and several vegetable oil, such as soybean oil, palm oil and coconut oil. The synthesized amides were soluble in ultra low sulfur diesel in the concentration range of ca. 1 wt%; the lubricating properties of ultra low sulfur diesel containing 120 ppm of amides were measured using an HFRR method. It was found that the wear scar diameter in the pure ultra low sulfur diesel decreased significantly from 581 ${\mu}m$ to 305~323 ${\mu}m$ upon the addition of the amides, indicating that lubricating properties of the diesel were improved. On the other hand, the types of vegetable oils did not affect the wear scar diameters, implying that lubricating properties of the diesel did not depend strongly on the structures of alkyl groups of alkanol amide derivatives. When we measured the lubricating properties of the one type of diesels containing various amounts of alkanol amide, we observed that the wear scar diameter decreased drastically with increasing the amide concentration, meaning that the lubricity improved with the amide concentration.