• 제목/요약/키워드: lubrication

검색결과 2,130건 처리시간 0.023초

MoS2/Montmorillonite Nanocomposite: Preparation, Tribological Properties, and Inner Synergistic Lubrication

  • Cheng, Lehua;Hu, Enzhu;Chao, Xianquan;Zhu, Renfa;Hu, Kunhong;Hu, Xianguo
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850144.1-1850144.13
    • /
    • 2018
  • A nano-$MoS_2$/montmorillonite K-10 (K10) composite was prepared and characterized. The composite contains two types of 2H-$MoS_2$ nanoparticles. One is the hollow spherical $MoS_2$ with a size range of 75 nm, and the other is the spherical nano cluster of $MoS_2$ with a size range of 30 nm. The two kinds of nano-$MoS_2$ were formed via assembly of numerous $MoS_2$ nano-platelets with a size of ~10 nm. A tribological comparison was then made among nano-$MoS_2$/K10, K10, nano-$MoS_2$ and a mechanical mixture of K10 and nano-$MoS_2$. K10 reduced the wear but slightly increased the friction. Nano-$MoS_2$ remarkably reduced both friction and wear. The mechanical mixture demonstrated better wear resistance than nano-$MoS_2$, indicating a synergistic anti-wear effect of nano-$MoS_2$ and K10. The synergistic effect was reinforced using nano-$MoS_2$/K10 instead of the mechanical mixture. A part of the $MoS_2$ in the contact region always lubricated the friction pair, and the rest formed a tribofilm. K10 segregated the friction pair to alleviate the ablation wear but magnified the abrasive wear. S-$MoS_2$ protects K10 and they together function as both a lubricant and an isolating agent to reduce the ablation and abrasive wear.

승용차 자동변속기용 테이퍼 롤러 베어링의 효율개선 연구 (A Study on Efficiency of Tapered Roller Bearing for an Automatic Transmission)

  • 이인욱;한성길;신유인;송철기
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.30-36
    • /
    • 2018
  • Automotive fuel efficiency regulations and air pollution control are hot issues of recent years in the automotive industry. To solve these regulation problems, many studies are continuing to improve the transmission efficiency of transmissions. Tapered roller bearings are useful to improve the transmission efficiency in the recent automobile parts. The frictional losses in the tapered roller bearings are mainly composed of the rolling friction and the sliding friction, and are dependent upon the load, the lubrication, the rotation speed of bearings, and etc. In this paper, the operating conditions of the transmission are defined and then the power losses of each bearing are calculated. In addition, improvement options are suggested after identifying the design factors influenced much by the improvement effect of power loss under the operating conditions of each bearing. We compare the power losses of the entire transmission system due to bearing improvements by comparing the friction losses between the original design and the improved design. Lastly, it is shown that the calculated power losses are valid by comparing the test values and the theoretical values for the frictional torque characteristics of the original and improved bearings.

인산을 이용한 법랑 코팅의 초윤활성 및 초기 시간에 대한 연구 (Study on the Superlubricity and Running-in Period of Vitreous Enamel Coating using Phosphoric Acid)

  • 한도렬;김태형;김대은
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.235-240
    • /
    • 2018
  • Superlubricity refers to the lubrication phenomenon that occurs when the friction coefficient is lower than 0.01. In recent years, this phenomenon has received a significant amount of attention because it can greatly contribute to the reduction of economic and environmental losses caused by friction and wear. In the case of acid lubricants, only ceramic materials can be used for superlubricity, and it takes a long running-in period to enter the superlubricity regime. In this work, we investigated the superlubricity effect of vitreous enamel coating on SUS304. We also examined the running-in period of vitreous enamel coating under phosphoric acid lubricant condition with respect to surface treatments. Drying and polishing methods were used to treat the vitreous enamel coating on the specimen. The friction experimental results revealed that superlubricity could be achieved with vitreous enamel coating. It was also found that the drying and polishing methods can significantly reduce the running-in period and improve the wear properties of vitreous enamel coating. In particular, the polishing method shortened the running-in period by approximately 99% and reduced the wear rate by approximately 99%, compared to nontreated vitreous enamel coating.

하중 및 온도에 따른 습식 클러치 마찰재의 트라이볼로지 특성 (Effect of Normal Force and Temperature on Tribological Properties of Wet Clutch Friction Material)

  • 박혜선;정구현
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.30-36
    • /
    • 2019
  • The tribological properties of paper-based friction materials are crucial to the performance of a wet clutch system. In this work, the friction and wear characteristics of a paper-based friction material in boundary lubrication state was experimentally investigated using a pin-on-reciprocating tribotester under various normal forces and temperatures. It was found that the wear rate of the friction material increased from $5.8{\times}10^{-6}mm^3/N/cycle$ to $5.5{\times}10^{-5}mm^3/N/cycle$ after 1,700 cycles of testing at $80^{\circ}C$ as normal force increased from 2 N to 7 N. The friction coefficient was also found to increase from 0.135 to 0.155 with increasing normal force from 2 N to 7 N. The increase in contact pressure with increasing normal force may be responsible for these results. In addition, as temperature increased from $20^{\circ}C$ to $80^{\circ}C$, the wear rate of the friction materials increased from $2.0{\times}10^{-5}mm^3/N/cycle$ to $3.6{\times}10^{-5}mm^3/N/cycle$ while the friction coefficient decreased from 0.163 to 0.146. This result may be associated with the decrease in the hardness of friction materials with increasing temperature. Furthermore, plastic deformation on the friction materials was mainly observed after the test. The outcome of this work may be useful to gain a better understanding of the tribological properties of friction materials, and therefore can contribute to the development of friction materials with enhanced performance for wet clutch systems.

고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구 (A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel)

  • 강경모;신동갑;박영훈;김세웅;김대은
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

그래핀의 나노스케일 마찰 및 표면 특성에 대한 연구동향 (Research Trends in the Nanoscale Friction and Surface Characteristics of Graphene)

  • 윤민아;김광섭;조대현
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.151-163
    • /
    • 2021
  • Since the discovery of single-layer graphene, exploiting graphene's excellent physical/chemical properties in tribology systems has been a topic of interest in academia over the last few decades. There is no doubt that understanding the underlying friction mechanism of graphite should precede this. Even now, new properties of graphene are being reported in academia, and based on this, studies exploring the origins of graphene's surface properties and friction characteristics in a wide range of scales are also being performed. From the perspective of lubrication engineering, graphene research can be largely divided into studies that 1) reveal its basic friction mechanism at the nanoscale and 2) explore its application in macroscale sliding systems. At the nanoscale, the basic friction mechanism of graphene is mainly due to its atomic thickness. In this paper, the various research on the nanoscale friction and surface characteristics of graphene is reviewed. Graphene surface properties, such as wettability and surface energy and the basic friction mechanisms of graphene attributed to adhesion, electronphonon scattering, bending stiffness, and the underlying substrate, are summarized. Further, we provide the research outcomes on the superlubricity of graphene. Finally, the potential application and challenges of the superlubricity of graphene are highlighted. Through this, we intend to provide summarized information to researchers interested in the tribological properties of graphene and help set the direction of future research.

고압 인젝터의 동적 거동을 고려한 최적 틈새 조합에 관한 연구 (Selection of Optimum Clearance Considering the Dynamic Behavior of a High-pressure Injector)

  • 류대원;김동준;박상신;류봉우
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.172-178
    • /
    • 2021
  • An injector is a mechanical device present inside the engine. Its main function is to supply an appropriate volume of fuel into the combustion chamber, which is directly related to the overall engine efficiency of a car. During the operation of an injector, a magnetic force lifts the parts of the injector from closed position to open position which generates a horizontal force on the needle. The horizontal force acts on a different position from that of the center of mass of the needle. Therefore, this causes eccentricity in the needle and the generation of a tilting motion during the lifting operation which can result in wear. However, appropriate selection of clearances for these parts can prevent wear. In this study, lubrication analysis is conducted to determine the optimum clearance of parts with sliding motion inside the injector. The height functions are derived considering the dynamic behavior and relative velocity of the parts. Using the derived height function, the pressure profiles are calculated for the lubricated surfaces from the Reynolds' equation. Subsequently, the fluid reaction forces are calculated. The equations of motions are applied to the fluid reaction forces and external forces are solved to calculate the minimum film thickness between each part with variation in the clearances. Finally, the optimum clearances are determined. The effect of the clearances on the behavior of the moving parts is presented and discussed.

페라이트계 스테인리스강의 열간압연 시 발생하는 Sticking 기구 연구 (Mechanism Study of Sticking Occurring during Hot Rolling of Ferritic Stainless Steel)

  • 하대진;성효경;이성학;이종석;이용득
    • 대한금속재료학회지
    • /
    • 제46권11호
    • /
    • pp.737-746
    • /
    • 2008
  • Mechanisms of sticking phenomena occurring during hot rolling of a modified STS 430J1L ferritic stainless steel have been investigated in this study by using a pilot-plant-scale rolling machine. As the rolling pass proceeds, the Fe-Cr oxide layer formed in a reheating furnace is destroyed, and the destroyed oxides penetrate into the rolled steel to form a thin oxide layer on the surface region. The sticking does not occur on the surface region containing oxides, whereas it occurs on the surface region without oxides by the separation of the rolled steel at high temperatures. This indicates that the resistance to sticking increases by the increase in the surface hardness when a considerable amount of oxides are formed on the surface region, and that the sticking can be evaluated by the volume fraction and distribution of oxides formed on the surface region. The lubrication and the increase of the rolling speed and rolling temperature beneficially affect to the resistance to sticking because they accelerate the formation of oxides on the steel surface region. In order to prevent or minimize the sticking, thus, it is suggested to increase the thickness of the oxide layer formed in the reheating furnace and to homogeneously distribute oxides along the surface region by controlling the hot-rolling process.

액체금속(GaInSn)윤활하에서 DLC(ta-C) 코팅된 레이저 표면 텍스쳐링 딤플패턴의 미끄럼 마찰특성평가 (Evaluation of Sliding Friction Properties of Laser Surface Texturing Dimple Pattern with DLC Coating under GaInSn Liquid Metal Lubricant)

  • 권규빈;장영준;채영훈
    • Tribology and Lubricants
    • /
    • 제37권3호
    • /
    • pp.106-111
    • /
    • 2021
  • There are several studies on reducing the friction that occurs on the relative sliding contact surface of moving parts under extreme environments. In particular, a solid lubricated bearing is studied to solve the tribological problem with friction reduction and durability parts using solid lubricants (lead or silver) in a vacuum atmosphere. Galinstan is mainly used as a liquid metal lubricant, but it is inevitable to have limited tribological applications owing to its high coefficient of friction. Many researchers work on surface texturing for surface modification and precision processing methods. To increase durability and low friction, DLC coating with hydrophobicity is applied on the contact surface texture. Therefore, using an untextured specimen, a dimple specimen, and a DLC-coated dimple specimen under liquid metal lubrication, this paper presents the following experimental sliding friction characteristics in the sliding friction test. 1) The average coefficient of friction of the DLC-coated dimple specimen and dimple specimen are lower compared to that of a non-patterned specimen. 2) In the DLC-coated dimple specimens, the average coefficient of friction changes according to the change in the dimple density. 3) DLC-coated dimple specimens with a density of 12.5 have the lowest average coefficient of friction under 41.6 N of normal load and 143.3 RPM.

필드 부하를 활용한 정유압기계식 변속시스템의 기어 해석 (Gear Analysis of Hydro-Mechanical Transmission System using Field Load Data)

  • 김정길;이동근;오주영;남주석
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.111-120
    • /
    • 2021
  • A tractor is an agricultural machine that performs farm work, such as cultivation, soil preparation, loading, bailing, and transporting, through attached working implements. Farm work must be carried out on time per the growing season of crops. As a result, the reliability of a tractor's transmission is vital. Ideally, the transmission's design should reflect the actual load during agricultural work; however, configuring such a measurement system is time- and cost-intensive. The design and analysis of a transmission are, therefore, mainly performed by empirical methods. In this study, a tractor with a measurement system was used to measure the actual working load in the field. Its hydro-mechanical transmission was then analyzed using the measured load. It was found that the velocity factor, load distribution factor, lubrication factor, roughness factor, relative notch sensitivity factor, and life factor affect the gear strength of the transmission. Also, loading conditions have a significant influence on the reliability of the transmission. It is believed that transmission reliability can be enhanced by analyzing the actual load on the transmission, as performed in this study.