Browse > Article
http://dx.doi.org/10.9725/kts.2021.37.5.151

Research Trends in the Nanoscale Friction and Surface Characteristics of Graphene  

Yoon, Min-Ah (Department of Nano-Mechatronics, University of Science and Technology (UST))
Kim, Kwang-Seop (Department of Nano-Mechatronics, University of Science and Technology (UST))
Cho, Dae-Hyun (Dept. of Mechatronics Engineering, Gyeongsang National University)
Publication Information
Tribology and Lubricants / v.37, no.5, 2021 , pp. 151-163 More about this Journal
Abstract
Since the discovery of single-layer graphene, exploiting graphene's excellent physical/chemical properties in tribology systems has been a topic of interest in academia over the last few decades. There is no doubt that understanding the underlying friction mechanism of graphite should precede this. Even now, new properties of graphene are being reported in academia, and based on this, studies exploring the origins of graphene's surface properties and friction characteristics in a wide range of scales are also being performed. From the perspective of lubrication engineering, graphene research can be largely divided into studies that 1) reveal its basic friction mechanism at the nanoscale and 2) explore its application in macroscale sliding systems. At the nanoscale, the basic friction mechanism of graphene is mainly due to its atomic thickness. In this paper, the various research on the nanoscale friction and surface characteristics of graphene is reviewed. Graphene surface properties, such as wettability and surface energy and the basic friction mechanisms of graphene attributed to adhesion, electronphonon scattering, bending stiffness, and the underlying substrate, are summarized. Further, we provide the research outcomes on the superlubricity of graphene. Finally, the potential application and challenges of the superlubricity of graphene are highlighted. Through this, we intend to provide summarized information to researchers interested in the tribological properties of graphene and help set the direction of future research.
Keywords
graphene; friction; surface characteristics; superlubricity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Koenig, S. P., Boddeti, N. G., Dunn, M. L., Bunch, J. S., "Ultrastrong adhesion of graphene membranes", Nat. Nanotechnol., Vol.6, pp.543-546, 2011.   DOI
2 Kwok, D. Y., Neumann, A. W., "Contact angle interpretation in terms of solid surface tension", Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol.161, pp.31-48, 2000.   DOI
3 Kim, C., Kim, D. E., Kim, H. J., "Tribological Properties of Carbon Nanotube Thin Films by Using Electrodynamic Spraying Method", Tribol. Lubr., Vol.34, No.6, pp.313-317, 2018, https://doi.org/10.9725/kts.2018.34.6.313   DOI
4 Wang, L., Zhou, X., Ma, T., Liu, D., Gao, L., Li, X., Zhang, J., Hu, Y., Wang, H., Dai, Y., Luo, J., "Superlubricity of a Graphene/MoS2 Heterostructure: A Combined Experimental and DFT Study". Nanoscale, Vol.9, p.10846-10853, 2017.   DOI
5 Yoon, T., Shin, W. C., Kim, T. Y., Mun, J. H.; Kim, T. S., Cho, B. J., "Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process", Nano Lett., Vol.12, pp.1448-1452, 2012.   DOI
6 Jiang, T., Zhu, Y., "Measuring graphene adhesion using atomic force microscopy with a microsphere tip", Nanoscale, Vol.7, pp. 10760-10766, 2015.   DOI
7 Engers, C. D., Cousens, N. E. A., Babenko, V., Britton, J., Zappone, B., Grobert, N., Perkin, S., "Direct measurement of the surface energy of graphene", Nano Lett., Vol.17, pp.3815-3821, 2017.   DOI
8 XDu, F., Huang, J., Duan, H., Xiong, C., Wang, J., "Wetting transparency of supported graphene is regulated by polarities of liquids and substrates", Appl. Surf. Sci., Vol.454, pp.249-255, 2018.   DOI
9 Ando, Y., Tanaka, T., Ino, J., Kakuta, K., "Relationships of friction, pull-off forces and nanometer-scale surface geometry", JSME Int. J., Ser. C, Vol.44, pp.453-461, 2001.
10 Carkner, C. J., Haw, S. M., Mosey, N. J., "Effect of Adhesive Interactions on Static Friction at the Atomic Scale", Phys. Rev. Lett., Vol.105, pp.056102, 2010.   DOI
11 Peng, Y., Zeng, X., Liu, L., Cao, X., Zou, K., Chen, R., "Nanotribological characterization of graphene on soft elastic substrate", Carbon, Vol.124, pp.541-546, 2017.   DOI
12 Yoon, M. A., Kim, C., Jung H. J., Kim J. H., Kim, K. S., "Water contact angles of graphene transferred by wet and dry transfer methods", Tribol. Lubr., Vol.34, No.2, pp.60-66, 2018, https://doi.org/10.9725/kts.2018.34.2.60   DOI
13 Liu, X. Z., Li, Q., Egberts, P., Carpick, R. W., "Nanoscale adhesive properties of graphene: The effet of sliding history", Adv. Mater. Interfaces, Vol.1, pp.1300053, 2014.   DOI
14 Elinski, M. B., Liu, Z., Spear, J. C., Batteas, J. D., "2D or not 2D? The impact of nanoscale roughness and substrate interactions on the tribological properties of graphene and MoS2", J. Phys. D: Appl. Phys., Vol.50, pp.103003, 2017.   DOI
15 Kim, S. H., Asay, D. B., Dugger, M. T., "Nanotribology and MEMS", Nano Today, Vol.2, pp.22-29, 2007.
16 Spear, J. C., Custer, J. P., Batteas, J. D., "The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene", Nanoscale, Vol.7, pp.10021-10029, 2015.   DOI
17 Zeng, X. Z., Peng, Y. T., Lang, H. J., "A novel approach to decrease friction of graphene", Carbon, Vol.118, pp.233-240, 2017.   DOI
18 Zeng, X., Peng, Y., Lang, H., Liu, L., "Controllable Nanotribological Properties of Graphene Nanosheets", Sci. Rep., Vol.7, pp.41891, 2017.   DOI
19 Bhushan, B., Introduction to Tribology (Second Edition), Chapter 10, WILEY, 2013.
20 Filleter, T., McChesney, J. L., Bostwick, A., Rotenberg, E., Emtsev, K. V., Seyller, T., Horn, K., Bennewitz, R., "Friction and Dissipation in Epitaxial Graphene Films", Phys. Rev. Lett., Vol.102, pp.1-4, 2009.
21 Bostwick, A., Ohta, T., Seyller, T., Horn, K., Rotenberg, E., "Quasiparticle Dynamics in Graphene", Nat. Phys., Vol.3, pp.36-40, 2007.   DOI
22 Chen, X., Yi, C., Ke, C., "Bending Stiffness and Interlayer Shear Modulus of Few-Layer Graphene", Appl. Phys. Lett., Vol.106, pp.1-5, 2015.
23 Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W., Heinz, T. F., "Ultraflat Graphene", Nature, Vol.462, pp.339-341, 2009.   DOI
24 Yu, J., Namba, Y., "Atomic Surface Roughness", Appl. Phys. Lett., Vol.73, pp.3607-3609, 1998.   DOI
25 Shinjo, K, Hirano, M., "Dynamics of friction: Superlubric state", Surf. Sci., Vol.283, No.1-3, pp.473-478, 1993.   DOI
26 Urbakh, M., Meyer, E., "Nanotribology: The Renaissance of Friction", Nat. Mater., Vol.9, pp.8-10, 2010.   DOI
27 Li, Q., Lee, C., Carpick, R. W., Hone, J., "Substrate Effect on Thickness-Dependent Friction on Graphene", Phys. Status Solidi Basic Res., Vol.247, pp.2909-2914, 2010.   DOI
28 Ohsawa, K., Hayashi, Y., Hasunuma, R., Yamabe, K., "Roughness Increase on Surface and Interface of SiO2 Grown on Atomically Flat Si(111) Terrace", Jpn. J. Appl. Phys., Vol.48, pp.8-11, 2009.
29 Hirano, M., Shinjo, K., "Atomistic locking and friction", Phys. Rev. B, Vol.41, No.17, pp.11837-11851, 1990.   DOI
30 Hirano, M., Shinjo, K., Kaneko, R., Murata, Y., "Anisotropy of frictional forces in muscovite mica", Phys. Rev. Lett., Vol.67, No.19, pp.2642-2645, 1991.   DOI
31 Hirano, M, Shinjo, K, Kaneko, R, Murata, Y., "Observation of superlubricity by scanning tunneling microscopy", Phys. Rev. Lett., Vol.78, No.8, pp.1448-1451, 1997.   DOI
32 Muser, M. H., "Structural lubricity: role of dimension and symmetry", EPL Europhys. Lett., Vol.66, No.1, pp.97-103, 2004.   DOI
33 Dienwiebel, M., Verhoeven, G. S., Pradeep, N., Frenken, J. W. M., Heimberg, J. A., Zandbergen, H. W., Phys. Rev. Lett., Vol.92, No.12, pp.126101, 2004.   DOI
34 Liu, Z., Yang, J., Grey, F., Liu, J. Z., Liu, Y., Wang, Y., Yang, Y., Cheng, Y., Zheng, Q., "Observation of Microscale Superlubricity in Graphite", Phys. Rev. Lett., Vol.108, 205503, 2012.   DOI
35 Feng, X. F., Kwon, S., Park, J. Y., Salmeron, M., "Superlubric Sliding of Graphene Nanoflakes on Graphene", ACS Nano, Vol.7, No.2, pp.1718-1724, 2013.   DOI
36 Liu, S.-W., Wang, H.-P., Xu, Q., Ma, T.-B., Yu, G., Zhang, C., Geng, D., Yu, Z., Zhang, S., Wang, W., Hu, Y.-Z., Wang, H., Luo, J., "Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere", Nat. Commun., Vol.8, pp.14029, 2017.   DOI
37 Joly-Pottuz, L., Dassenoy, F., Vacher, B., Martin, J. M., Mieno, T., "Ultralow Friction and Wear Behaviour of Ni/Y-Based Single Wall Carbon Nanotubes (SWNTs)", Tribol. Int., Vol.37, pp.1013-1018, 2004.   DOI
38 Zhang, Z., Du, Y., Huang, S., Meng, F., Chen, L., Xie, W., Chang, K., Zhang, C., Lu, Y., Lin, C.-T., Li, S., Parkin, I. P., Guo, D., "Macroscale Superlubricity Enabled by Graphene-Coated Surfaces", Adv. Sci., Vol.7, pp.1903239, 2020.   DOI
39 Holmberg, K., Matthews, A., Coatings Tribology, 2nd Edition, Chap.1, pp.1-3, Elsevier Science, Amsterdam, NL, 2008.
40 Bhushan, B., Introduction to Tribology (Second Edition), Chapter 3, WILEY, 2013.
41 Lee, H. W., Kim, K. S., Lee, J. H., Kim, H. S., Kim, J. H., Oh, D. H., Ryu, S. H., Jang, Y. C., Kim, J. H., Lee, H. J., Kim, K. S., "Evaluation of MWCNT Exposure and the Wear Characteristics of MWCNT-Containing PC/ABS Composites", J. Korean Soc. Tribol. Lubr. Eng., Vol.30, No.5, pp.279-283, 2014, https://doi.org/10.9725/kstle.2014.30.5.279   DOI
42 Kang, Y. J., Kim, D. H., Ryu, H., Kim, J., Jang, Y. J., "Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (Ta-C) Coating", Tribo. Lubr., Vol.35, No.6, pp.362-368, 2019, https://doi.org/10.9725/kts.2019.35.6.362   DOI
43 Cho, D. H., Wang, L., Kim, J. S., Lee, G. H., Kim, E. S., Lee, S., Lee, S. Y., Hone, J., Lee, C., "Effect of surface morphology on friction of graphene on various substrates", Nanoscale, Vol.5, pp3063-3069, 2013.   DOI
44 Rafiee, J., Mi, X., Gullapalli, H., Thomas, A. V., Yavari, F., Shi, Y., Ajayan, P. M., Koratkar, N. A., "Wetting transparency of graphene", Nat. Mater., Vol.11, pp.217-222, 2012.   DOI
45 Shih, C. J., Strano, M. S., Blankschtein, D., "Wetting translucency of graphene", Nat. Mater., Vol.12, pp.866-869, 2013.   DOI
46 Butt, H. J., Cappella, B., Kappl, M., "Force measurements with the atomic force microscope: Technique, interpretation and applications", Surf. Sci. Rep., Vol.59, pp.1-152, 2005.   DOI
47 Pawlak, R., Kawai, S., Meier, T., Glatzel, T., Baratoff, A., Meyer, E., "Single-molecule manipulation experiments to explore friction and adhesion", J. Phys. D: Appl. Phys., Vol.50, pp.113003, 2017.   DOI
48 Zong, Z., Chem, C. L., Dokmeci, M. R., Wan, K. T., "Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles", J. Appl. Phys., Vol.107, pp.026104, 2010.   DOI
49 Tsoi, S., Dev, P., Friedman, A. L., Stine, R., Robinson, J. T., Reinecke, T. L., Sheehan, P. E., "van der Waals Screening by Single-Layer Graphene and Molybdenum Disulfide", ACS Nano, Vol.8, pp.12410-12417, 2014.   DOI
50 Yoon, M. A., Kim, C., Won, S., Jung, H. J., Kim, J. H., Kim, K. S., "Surface energy of graphene transferred by wet and dry transfer methods", Tribol. Lubr., Vol.35, No.1, pp.9-15, 2019, https://doi.org/10.9725/kts.2019.35.1.9   DOI
51 Bhushan, B., "Nanotribology and nanomechanics of MEMS/ NEMS and BioMEMS/BioNEMS materials and devices", Microelectron. Eng., Vol.84, pp.387-412, 2007.   DOI
52 Tran-Khac, B. C., Chung, K. H., "Frictional Properties of Two-Dimensional Materials against Spherical and Flat AFM Tips" Tribol. Lubr., Vol.35, No.4, pp.199-205, 2019, https://doi.org/10.9725/kts.2019.35.4.199   DOI
53 CHOI, J., Kim, J.-S., Byun, I.-S., Lee, D. H., Lee, M. J., Park, B. H., Lee, C., Yoon, D., Cheong, H., Lee, K. H., Son, Y.-W., Park, J. Y., Salmeron, M., "Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene", SCIENCE, Vol.333 pp.607-610, 2011.   DOI
54 Lee, H., Lee, N., Seo, Y., Eom, J., Lee, S., "Comparison of Frictional Forces on Graphene and Graphite", Nanotechnology, Vol.20, pp.325701, 2009.   DOI
55 Sajadi, B., van Hemert, S., Arash, B., Belardinelli, P., Steeneken, P. G., Alijani, F., "Size- and Temperature-Dependent Bending Rigidity of Graphene Using Modal Analysis", Carbon, Vol.139, pp.334-341, 2018.   DOI
56 Bundy, F. P., Bassett, W. A., Weathers, M. S., Hemley, R. J., Mao, H. K., Goncharov, A. F., "The Pressure-Temperature Phase and Transformation Diagram for Carbon; Updated through 1994", Carbon, Vol.34, No.2, pp. 141-153, 1996.   DOI
57 Lee, C., Wei, X., Kysar, J. W., Hone, J., "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, Vol.321, pp.385-388, 2008.   DOI
58 Allen, M. J., Tung, V. C., Kaner, R. B., "Honeycomb Carbon: A Review of Graphene", Chem. Rev., Vol.110, No.1, pp.132-145, 2010.   DOI
59 Berman, D., Erdemir, A., Sumant, A. V., "Graphene: A New Emerging Lubricant", Mater. Today, Vol.17, No.1, pp.31-42, 2014.   DOI
60 Rui, L., "Tribological Behaviour of Multi-Walled Carbon Nanotube Films", AIP Adv., Vol.4, No.3, pp.031309, 2014.   DOI
61 Jeong, Y. W., Kim, K. S., Lee, H. W., Jeong, M. W., Lee, J. H., Kim, J. H., Lee, H. J., Kim, K. S., "Effects of Multi-Walled Carbon Nanotubes on Electrical and Wear Characteristics of High Impact Polystyrene Composites", J. Korean Soc. Tribol. Lubr. Eng., Vol.31, No.3, pp.95-101, 2015, https://doi.org/10.9725/kstle.2015.31.3.95   DOI
62 Shih, C. J., Wang, Q. H., Lin, S., Park, K. C., Jin, Z., Strano, M. S., Blankschtein, D., "Breakdown in the wetting transparency of graphene", Phys. Rev. Lett., Vol.109, 176101, 2012.   DOI
63 Kim, I. Y., Lee, J. H., Lee, G. S., Baik, S. H., Kim, Y. J., Lee, Y. Z., "Friction and Wear Characteristics of the Carbon Nanotube-Aluminum Composites with Different Manufacturing Conditions", Wear, Vol 267, pp.593-598, 2009.   DOI
64 Gong, Z., Bai, C., Qiang, L., Gao, K., Zhang, J., Zhang, B., "Onion-like Carbon Films Endow Macro-Scale Superlubricity", Diam. Relat. Mater., Vol.87, pp.172-176, 2018.   DOI
65 Rani, R., Kumar, N., Kozakov, A. T., Googlev, K. A., Sankaran, K. J., Das, P. K., Dash, S., Tyagi, A. K., Lin, I. N., "Superlubrication Properties of Ultra-Nanocrystalline Diamond Film Sliding against a Zirconia Ball", RSC Adv., Vol.5, pp.100663-100673, 2015.   DOI
66 Kim, H. J., Chung, K. H., "Review on Molecular Simulation of Graphene from a Tribological Perspective", Tribol. Lubr., Vol.36, No.2, pp.55-63, 2020, https://doi.org/10.9725/kts.2020.36.2.55   DOI
67 Kim, C., Yoon, M. A., Jang, B., Kim, J. H., Kim, K. S., "Review on Transfer Process of Two-Dimensional Materials" Tribol. Lubr., Vol.36, No.1, pp.1-10, 2020, https://doi.org/10.9725/kts.2020.36.1.1   DOI
68 Kozbial, A., Li, Z., Sun, J., Gong, X., Zhou, F., Wang, Y., Xu, H., Liu, H., Li, L., "Understanding the intrinsic water wettability of graphite", Carbon, Vol.74, pp.218-225, 2014.   DOI
69 Raj, R., Maroo, S. C., Wang, E. N., "Wettability of graphene", Nano Lett., Vol.13, pp1509-1515, 2013.   DOI
70 Costa, M. C. F., Sousa, M. R. M., Larrude, D. R. G., Fechine, G. j. M., "Adhesion between graphene and polymers: A surface analysis perspective", exPRESS Polymer Letters, Vol.13, pp.52-64, 2019.   DOI
71 Elinski, M. B., Menard, B. D., Liu, Z., Batteas, J. D., "Adhesion and Friction at Graphene/Self-Assembled Monolayer Interfaces Investigated by Atomic Force Microscopy", J. Phys. Chem. C, Vol.121, No.10, pp.5635-5641, 2017.   DOI
72 Choi, T., Kim, S. J., Park, S., Hwang, T. Y., Jeon, Y., Hong, B. H., "Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion", Nanoscale, Vol.7, pp. 7138-7142, 2015.   DOI
73 Huang, R., "Show of adhesive strength", Nat. Nanotechnol., Vol.6, pp.537-538, 2011.   DOI
74 Britt, D. W., Hofmann, U. G., Mobius, D., Hell, S. W., "Influence of Substrate Properties on the Topochemical Polymerization of Diacetylene Monolayers", Langmuir, Vol.17, pp.3757-3765, 2002.   DOI
75 Lee, C., Li, Q., Kalb, W., Liu, X. Z., Berger, H., Carpick, R. W., Hone, J., "Frictional Characteristics of Atomically Thin Sheets", Science, Vol.328, pp.76-80, 2010.   DOI
76 Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K. R. S., Erdemir, A., Sumant, A. V., "Macroscale superlubricity enabled by graphene nanoscroll formation", Science, Vol.348, No.6239, pp.1118-1122, 2015   DOI