• Title/Summary/Keyword: low-yield strength plates

Search Result 18, Processing Time 0.023 seconds

Effect of welding variables on the crack arrest toughness of thick steel plate (선급 극후물재의 취성균열 전파 정지 인성에 미치는 용접변수의 영향)

  • Ryu, Kang-Mook;An, Gyu-Baek;Kim, Tae-Su;Lee, Tae-Yeung;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.103-103
    • /
    • 2009
  • As the size of containership increased over 14,000TEU, thick steel plate with high strength has been used. The plate thickness increased over 70mm and yield strength of the steel plate was around $47kg_f/mm^2$. Many researchers reported that the thick welded plate has low crack arrest toughness. They noticed the crack arrest ability is dependent on the plate thickness. In other words, brittle crack propagates straightly along the welded line and make abrupt fracture in the thick plate which causes low $K_{ca}$. In this study, the other factors, especially welding heat input, to cause low crack arrest toughness was investigated for thick steel plate welds. EH grade steel plates were used in this study and 50 to 80 thick plates were tested to confirm thickness sensitivity. Electro gas welding (EGW) and flux cored arc welding (FCAW) were adopted to prepare the welded joints. Temperature gradient ESSO test was performed to measure $K_{ca}$ values with the variation of welding variables. As a result of this study, regardless of plate thickness, welding heat input to cause welding residual stress around crack path is a key factor to control the brittle crack propagation in welded joints.

  • PDF

Rolling of AZ31 Alloy and Microstructure of Rolled Plates (압연조건에 따른 AZ31 마그네슘합금판재의 변형거동 및 미세조직 변화)

  • Ha, T.K.;Jeong, H.T.;Sung, H.J.;Park, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.63-66
    • /
    • 2006
  • The effect of warm rolling under various conditions on the microstructure and mechanical property was investigated using an AZ31 Mg alloy sheet. Several processing parameters such as initial thickness, thickness reduction by a single pass rolling, rolling temperature, roll speed, and roll temperature were varied to elicit an optimum condition for the warm rolling process of AZ31 Mg alloy. Microstructure and mechanical properties were measured for specimens subjected to rolling experiments of various conditions. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as $200^{\circ}C$ under the roll speed of 30 m/min. The initial microstructure before rolling was the mixed one consisting of partially recrystallized and cast structures. Grain refinement was found to occur actively during the warm rolling, producing a very fine grain size of 7 mm after 50% reduction in single pass rolling at $200^{\circ}C$. Yield strength of 204MPa, tensile strength of 330MPa and uniform elongation of 32% have been obtained in warm rolled sheets.

  • PDF

An Experimental study on the Structural Performance by the Depth Variation of Capacity of U-shaped composite Beam (U-형 복합보의 춤 변화에 따른 구조성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2020
  • The U-shaped composite beam used in this study consist of a reinforced concrete structure, a beam steel structure supporting the slab, a reinforced concrete structure, and a U-shaped steel plate. The U-shaped composite beam was developed for the purpose of using it as a parking lot because it is highly constructible and has low floor height and long span. For the improvement of constructivity, the U-shaped composite beam ends are planned with standardized H-shaped steel and connected directly to the columns, and the middle of the U-shaped composite beam consists of U-shaped steel plates folded in U-shaped form using thin steel plates (t=6) instead of H-shaped steel. In the middle of the composite beam, where U-shaped steel plates are located, the depth of U-shaped beam may be planned to be small so as to satisfy the height limit of the parking lot. It is important to grasp the structural performance according to the change of depth because low beam depth is advantageous for the reduction of the floor height, but it is a inhibitor to the structural behaviors of U-shaped composite beam. In addition, since U-shaped composite beams are a mixture of steel frame structures, reinforced concrete structures and U-shaped steel plates, securing unity has a great influence on securing structural performance. Therefore, in this study, a structural experiment was conducted to understand the structural performance according to the depth change for U-shaped composite beam. A total of three specimens were planned, including two specimens that changed the depth using a criteria specimen planned for a general parking lot. The results of the experiment showed that the specimens who planned the depth greatly had better structural performance such as yield strength, maximum strength, and energy than the standard specimen.

A Study on Development of Automatic Path Tracking Algorithm for LNG Aluminium Plate and Selection of Process Parameters by Using Artificial Intelligence (LNG 알루미늄 판재 가공용 자동 궤적 추적 알고리즘 개발 및 인공지능을 이용한 공정조건 선정에 관한 연구)

  • 문형순;권봉재;정문영;신상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.17-25
    • /
    • 1998
  • Aluminum alloys have low density, relatively high strength and yield strength, good plasticity, good machinability, and high corrosion and acid resistance. Therefore, they are suitable for large containers for the food, chemical and other industries. Large containers are often bodies of revolution consisting of shell courses, stiffening rings, heads and other elements joined by annular welds. Larger containers have longer welds and require greater leak-tightness and higher weld mechanical properties. The LNG tank consists of aluminum plates with various sizes, so its construction should by divided by several sections. Moreover, each section has its own sub-section consisted of several aluminum plates. To guarantee the quality of huge LNG tank, therefore, the precise control of plate dimension should by urgently needed in conjunction with the appropriate selection of process parameters such as cutting speed, depth of cut, rotational speed and so on. In this paper, a manufacturing system was developed to implement automatic circular tracking in height direction and automatic circular interpolation in depth of cut direction. Also, the neural network based on the backpropagation algorithm was used to predict the cutting quality and motor load related with the life time of the developed system. It was revealed that the manufacturing system and the neural network could be effectively applied to the bevelling process and to predict the quality of machined area and the motor load.

  • PDF

Moment Resistance Performance Evaluation of Larch Glulam Joints using GFRP-reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 접합부의 모멘트저항 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • Instead of metal connector generally used on the structural glued laminated timber rahmen joints, the GFRP reinforced laminated plates combining veneer and GFRP (Glass Fiber Reinforced Plastic) and bonded type GFRP rod were used as the connectors. As a result of moment resistance performance evaluation on the joint part applied with these connectors, the yield moment of specimen using the GFRP reinforced laminated plates and GFRP rod pin was measured 4 % lower in comparison to the specimen (Type-1) using the metal connectors, but the initial rotational stiffness was measured 29% higher. Also, the yield moment and rotational stiffness of the specimen using the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin showed were measured 11% and 56% higher in comparison to the Type-1 specimen, showing the best performance. It was also confirmed through the failure shape and perfect elasto-plasticity analysis that it showed ductility behavior, not brittle fracture, from the shear resisting force by the pin and the bonding strength increased and the unification of member was carried out. On the other hand, in case of the specimen bonded with GFRP rod, it was impossible to measure the bonding performance or it was measured very low due to poor bonding.

Residual stresses measurement in the butt joint welded metals using FSW and TIG methods

  • Taheri-Behrooz, Fathollah;Aliha, Mohammad R.M.;Maroofi, Mahmood;Hadizadeh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.759-766
    • /
    • 2018
  • Friction Stir Welding (FSW) is a solid-state process, where the objects are joined together without reaching their melting point. It has been shown that this method is a suitable way to join dissimilar aluminium alloys. The current article employed hole drilling technique to measure the residual stress distribution experimentally in different zones of dissimilar aluminium alloys AA6061-T6 and AA7075-T6 Butt welded using FSW. Results are compared with those of similar AA6061-T6 plates joined using a conventional fusion welding method called tungsten inert gas (TIG). Also, the evolution of the residual stresses in the thickness direction was investigated, and it was found that the maximum residual stresses are below the yield strength of the material in the shoulder region. It was also revealed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses. Meanwhile, Vickers micro hardness measurements were performed in the cross-section of the samples. The largest hardness values were observed in the stir zone (SZ) adjacent to the advancing side whereas low hardness values were measured at the HAZ of both alloys and the SZ adjacent to the retreating side.

Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy (β-type Ti-14Mo-3Nb-3Al-0.2Si 합금의 열처리 조건에 따른 기계적 특성)

  • Kim, Tae Ho;Lee, Jun Hee;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.

A Study on the Material Characteristics and the Welding Properties of 600MPa Grade Steel (SM 570 TMC) (600MPa급(SM 570 TMC) 강재의 소재 및 용접특성에 관한 연구)

  • Kim, Jong Rak;Kim, Sang Seup;Lee, Chul Ho;Lee, Eun Taik;Beak, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.773-781
    • /
    • 2008
  • As buildings are becoming taller and longer-spanned, the requirements of high-strength and reliable steels are becoming increasingly stringent. Structural steels, however, acquire significantly different mechanical properties when their strength becomes higher. In this study, the mechanical properties, welding characteristics, and conformities of the 600MPa-grade high-strength steel were tested. The 600MPa-grade steel plates exhibited stable criterion strengthvalues and showed low carbon equivalents (${\mathcal{Ceq}}$) and composition (${\mathcal{Pcm}}$) as well as excellent welding hardness. In the tensile strength test, all the specimens were found to have strengths of over 600MPa. In the Sharphy impact test, the impact-absorbed energy of the V-notch specimens was shown to be 47J at the KS limit. Moreover, the maximum hardness of the specimens in the weld-heat-affected zone at a normal temperature was the same as that before welding. Their weld metal properties, however, were found not to be as good as those of high-strength steel. As such, the details of high-strength steel must be determined.