• Title/Summary/Keyword: low-velocity impact

Search Result 322, Processing Time 0.03 seconds

Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core

  • Ahmad B.H. Kueh;Juin-Hwee Tan;Shukur Abu Hassan;Mat Uzir Wahit
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.755-764
    • /
    • 2023
  • The article examines the impact response of the sandwich beam furnished by a novel bilayer core as inspired by the woodpecker's head architecture under different repeatedly exerted low-velocity impact loadings by employing the finite element package, ABAQUS. The sandwich beam forms four essential parts comprising bottom and top carbon fiber reinforced polymer laminates encasing bilayer core made of laterally arched solid hot melt adhesive material and aluminum honeycomb. Impact loadings are implemented repeatedly with a steel hemisphere impactor for various impact energies, 7.28 J, 9.74 J, and 12.63 J. Essentially, the commonly concentrated stresses at the impact region are regulated away by the arched core in all considered cases thus reducing the threat of failure. The sandwich beam can resist up to 5 continual impacts at 7.28 J and 9.74 J but only up to 3 times repeated loads at 12.63 J before visible failure is noticed. In the examination of several key impact performance indicators under numerous loading cases, the proposed beam demonstrates favorably up to 1.3-11.2 higher impact resistance efficacies compared to existing designs, therefore displaying an improvement in repeated impact resistance of the new design.

Impact Characteristics on the Laminated Shell for CF/Epoxy Composite (CF/Epoxy 복합재 적층쉘의 충격특성)

  • 양현수;정풍기;김영남;이종선
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.311-323
    • /
    • 2004
  • This paper is to study the energy absorption characteristics of CF/Epoxy(Carbon Fiber/Epoxy Resin) laminated shell with the various curvatures subjected to transverse impact loadings under the low impact velocity in consideration of design of structural members for use of transportation machine, which are consisted of the characteristics of high stiffness, strength and lightweight. The curvature radius are associated with the energy absorption characteristics of CF/Epoxy laminated shell which is brittleness material. In all tests, maximum load of CF/Epoxy laminated plate is higher than that of laminated shell with curvature, but maximum deflection is lower. And then absorbed energy of laminated shell with curvature is higher than laminated plate(curvature radius is unlimited), As curvature radius is increased, the absorbed energy is increased in laminated shell with curvature.

A Study on the Dynamic Fracture Toughness of Welding Structural Steels by Instrumented Impact Testing (계장화 충격시험법에 의한 구조용강 용접부의 동적 파괴인성에 관한 연구)

  • 김헌주;김경민;윤의박
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • In this study, investigations were conducted in calculating parameters of elastic-plastic fracture mechanics using single specimen. The validity of these testing methods was judged by the confirmation of multiple specimen method of stop block test. The results were as follows: In order to measure a fracture toughness using the instrumented impact test, two general requirement must be considered; One, setting up proper impact velocity considered the effect of loading and the other, the necessity of low blow test for obtaining true energy by the compliance correction. It was possible to detect a crack initiation point by calculating the compliance changing rate from a load-defection curve. Criterion of a stable crack growth, $T_{mat}$ could be estimated by using key-curve method for a base metal. and combining Kaiser's rebound compliance with Paris-Hutchison's $T_{appl}$ equation for the brittled zone of welding heat affected.at affected.d.

  • PDF

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J;Kong, C;Soutis C.
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.66-73
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests. CAI strength and open hole compressive strength tests using 3 mm thick composite plates($[45/-45/0/90]_{3s}$- IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels(between 5.4 J and 18.7 J) follow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. It is identified that the failure behaviour of the specimens from the CAI strength tests was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths art: in good agreement with the measured open hole compressive strengths. considering the impact damage site area, an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

Impact Monitoring in Composite Beam Using Stabilization Controlled FBG Sensor System (안정화된 FBG 센서를 이용한 복합적층보에서의 충격위치검출)

  • Bang Hyung-Joon;Park Sang-Oh;Hong Chang-Sun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Impact location monitoring is one of the major concerns of the smart health monitoring. For this application, multipoint ultrasonic sensors are to be employed. In this study, a multiplexed FBG sensor system with wide dynamic range was proposed and stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. For the intensity demodulation system of FBG sensors, Fabry-Perot tunable filter(FP-TF) with 23.8nm FSR(free spectral range) was used, which behaves as two separate filters between $1530 \~ 1560$ nm range. Two FBG sensors were attached on the bottom side of the graphite/epoxy composite beam specimen, and low velocity impact tests were performed to detect the one-dimensional impact locations. Impact locations were calculated by the arrival time differences of the impact longitudinal waves acquired by the two FBGs. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely and found the impact locations with the average error of 1.32mm.

  • PDF

Numerical Analysis of Ball Strainer Screen Module Blockage Effects (볼 여과기 스크린 모듈의 단면 폐쇄효과에 관한 수치해석적 연구)

  • Jeong, Gyung-Cheol;Lee, Hae-Soo;Lee, Chi-Woo
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.83-89
    • /
    • 2015
  • A ball strainer screen module, which is used for a condenser tube cleaning system, is a critical mechanical component for maintaining condenser cleanliness. Despite of this importance, not many research have been focused on this module because of its relatively low usage. Employing CFD, this study examines the implication of fluid velocity change and blockage ratio on the ball strainer screen velocity and the static pressure distribution. Through this study, the impact of blockage in the space between ball strainer screen modules is verified. Also, it is found that the ranges of non-dimensional velocity distribution and static pressure distribution decrease as blockage ratio becomes smaller.

Breakup Characteristics of Liquid Sheets Formed by Impinging Jets in High Pressure Environments (고압분위기에서 충돌제트로 형성되는 액막의 분열특성)

  • Jung, Ki-Hoon;Khil, Tea-Ock;Lim, Byoung-Jik;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0MPa. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity, It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Breakup Characteristics of Laminar and Turbulent Liquid Sheets Formed by Impinging Jets in High Pressure Environments

  • Jung, K.;Khil, T.;Lim, B.;Yoon, Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.173-179
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0㎫. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity. It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Sensitivity analysis of skull fracture

  • Vicini, Anthony;Goswami, Tarun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • Results from multiple high profile experiments on the parameters influencing the impacts that cause skull fractures to the frontal, temporal, and parietal bones were gathered and analyzed. The location of the impact as a binary function of frontal or lateral strike, the velocity, the striking area of the impactor, and the force needed to cause skull fracture in each experiment were subjected to statistical analysis using the JMP statistical software pack. A novel neural network model predicting skull fracture threshold was developed with a high statistical correlation ($R^2=0.978$) and presented in this text. Despite variation within individual studies, the equation herein proposes a 3 kN greater resistance to fracture for the frontal bone when compared to the temporoparietal bones. Additionally, impacts with low velocities (<4.1 m/s) were more prone to cause fracture in the lateral regions of the skull when compared to similar velocity frontal impacts. Conversely, higher velocity impacts (>4.1 m/s) showed a greater frontal sensitivity.

Characteristics of Low Velocity Impact Responses due to Interface Number and Stacking Sequences of CFRP Composite Plates (CFRP 복합적층판의 적층배향.계면수에 따른 저속충격특성)

  • Im, Kwang-Hee;Park, No-Sick;Ra, Seung-Woo;Kim, Young-Nam;Lee, Hyun;Sim, Jae-Ki;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.48-56
    • /
    • 2001
  • In this paper, this study aims at the evaluation on the characteristics of CFRP laminate plates using a falling weight impact tester. The experiment was conducted on several laminates of different orientation. A system was built far measur- ing the impact strength of CFRP laminates in consideration of stress wave propagation theory using a falling weight impact tester. Delamination areas of impacted specimens for the different ply orientation were measured with ultrasonic C- scanner to find correlation between impact energy and delamination area. Absorbed energy of quasi-isotropic specimen having flour interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the greater the energy absorbed. The absorbed energy oft hybrid specimen containing a GFRP layer was higher than that of normal specimens.

  • PDF