• 제목/요약/키워드: low-temperature sintering Microstructure

검색결과 150건 처리시간 0.031초

Li2O-Bi2O3 첨가가 Pb(Mg1/3Nb2/3)0.65Ti0.35O3 세라믹의 압전 특성에 미치는 영향 (Effect of Li2O-Bi2O3 Addition on the Piezoelectric Properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 Ceramics)

  • 김재혁;김시연;최정식;여동훈;신효순;남산
    • 한국분말재료학회지
    • /
    • 제26권5호
    • /
    • pp.405-409
    • /
    • 2019
  • Piezoelectric ceramic specimens with the $Pb(Mg_{1/3}Nb_{2/3})_{0.65}Ti_{0.35}O_3$ (PMN-PT) composition are prepared by the solid state reaction method known as the "columbite precursor" method. Moreover, the effects of the $Li_2O-Bi_2O_3$ additive on the microstructure, crystal structure, and piezoelectric properties of sintered PMN-PT ceramic samples are investigated. The addition of $Li_2O-Bi_2O_3$ lowers the sintering temperature from $1,200^{\circ}C$ to $950^{\circ}C$. Moreover, with the addition of >5 wt.% additive, the crystal structure changes from tetragonal to rhombohedral. Notably, the sample with 3 wt.% additive exhibits excellent piezoelectric properties ($d_{33}=596pC/N$ and Kp = 57%) and a sintered density of $7.92g/cm^3$ after sintering at $950^{\circ}C$. In addition, the sample exhibits a curie temperature of $138.6^{\circ}C$ at 1 kHz. Finally, the compatibility of the sample with a Cu electrode is examined, because the energy-dispersive X-ray spectroscopy data indicate the absence of interdiffusion between Cu and the ceramic material.

Densification Behavior of Fe-Ni Alloy Nanoparticles

  • Kim, Sang-Phil;Lee, Woo-Seok;Lee, Jae-Wook;Choi, Chul-Jin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.531-532
    • /
    • 2006
  • The effects of compaction pressure and sintering temperature on the densification of Fe-40wt%Ni alloy nanoparticles were analyzed. The Fe-Ni nanoparticles were fabricated by an arc-discharge method and then, compacted at three different pressures and sintered at 550 to $900\;^{\circ}C$. Densification was completed at temperature as low as $600\;^{\circ}C$ and high-pressure compaction was found to enhance densification. Densification behaviors and microstructure developments have been investigated through density measurements, electron microscopies, and hardness measurements.

  • PDF

Si/SiC 혼합물의 소결특성에 미치는 첨가제의 영향 (Additive Effects on Sintering of Si/SiC Mixtures)

  • 김수룡;권우택;김영희;김종일;이윤주;이현재;오세천
    • 한국재료학회지
    • /
    • 제22권12호
    • /
    • pp.701-705
    • /
    • 2012
  • The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at $1,350^{\circ}C$ and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.

Low-Temperature Sintering of Barium Calcium Zirconium Titanate Lead-Free Piezoelectric Ceramics

  • Fisher, John G.;Lee, Dae-Gi;Oh, Jeong-Hyeon;Kim, Ha-Nul;Nguyen, Dieu;Kim, Jee-Hoon;Lee, Jong-Sook;Lee, Ho-Yong
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.157-162
    • /
    • 2013
  • The need for lead-free piezoceramics has caused a renewal of interest in $BaTiO_3$-based systems. Recently, it was found that ceramics in the $(Ba,Ca)(Zr,Ti)O_3$ system have properties comparable to those of $Pb(Zr,Ti)O_3$. However, these ceramics require rather high sintering temperatures of $1450-1550^{\circ}C$. In this work, the effect of $TiO_2$ and CuO addition on the sintering behavior, microstructure, dielectric and piezoelectric properties of $(Ba_{0.85}Ca_{0.15})(Zr_{0.1}Ti_{0.9})O_3$ (BCTZ) ceramics will be discussed. BCTZ ceramics were prepared by the mixed oxide route and 1 mol % of $TiO_2$ or CuO was added. Undoped and doped ceramics were sintered at $1350^{\circ}C$ for 1-5 h. CuO was found to be a very effective sintering aid, with samples sintered for 1 h at $1350^{\circ}C$ having a bulk density of 95% theoretical density; however the piezoelectric properties were greatly reduced, probably due to the small grain size.

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.

Zr2WP2O12 세라믹스의 합성과 소결거동 연구 (Synthesis and Sintering Behavior of Zr2WP2O12 Ceramics)

  • 김용현;김남옥;이상진
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.586-591
    • /
    • 2012
  • $Zr_2WP_2O_{12}$ powder, which has a negative thermal expansion coefficient, was synthesized by a solid-state reaction with $ZrO_2$, $WO_3$ and $NH_4H_2PO_4$ as the starting materials. The synthesis behavior was dependent on the solvent media used in the wet mixing process. The $Zr_2WP_2O_{12}$ powder prepared with a solvent consisting of D. I. water was fully crystallized at $1200^{\circ}C$, showing a sub-micron particle size. According to the results obtained from a thermal analysis, a $ZrP_2O_7$ was synthesized at a low temperature of $310^{\circ}C$, after which it was reacted with $WO_3$ at $1200^{\circ}C$. A new sintering additive, $Al(OH)_3$, was applied for the densification of the $Zr_2WP_2O_{12}$ powders. The cold isostatically pressed samples were densified with 1 wt% $Al(OH)_3$ additive or more at $1200^{\circ}C$ for 4 h. The main densification mechanism was liquid-phase sintering due to the liquid which resulted from the reaction with amorphous or unstable $Al_2O_3$ and $WO_3$. The densified $Zr_2WP_2O_{12}$ ceramics showed a relative density of 90% and a negative thermal expansion coefficient of $-3.4{\times}10^{-6}/^{\circ}C$. When using ${\alpha}-Al_2O_3$ as the sintering agent, densification was not observed at $1200^{\circ}C$.

Ba5Nb4O15 세라믹스의 저온소결 및 마이크로파 유전특성 (Low Temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15 Ceramics)

  • 김종대;김응수
    • 한국세라믹학회지
    • /
    • 제41권10호
    • /
    • pp.783-787
    • /
    • 2004
  • [ $Ba_5Nb_4O_{15}$ ] 세라믹스의 소결 온도를 낮추기 위하여 $PbO-B_2O_3-SiO_2$계 glass frit를 $0.5\~10w\%$ 첨가하고 소결 조건 변화에 따른 마이크로파 유전특성과 미세구조를 조사하였다. $Ba_5Nb_4O_{15}$ 유전체의 소결 밀도와 마이크로파 유전특성은 액상 소결조제로서 첨가한 glass frit의 첨가량에 따라 크게 변화하였다. $PbO-B_2O_3-SiO_2$계 glass frit을 $3wt\%$ 첨가하고 $900^{\circ}C$에서 2시간 소결한 시편은 유전상수(K) 41.4, 품질계수(Q$\times$f) 13,485 GHz, 공진주파수 온도계수(TCF) 9 ppm/$^{\circ}C$의 마이크로파 유전특성을 나타내었다. 또한, 상기 조성의 유전체 재료는 Ag 전극과의 동시소결에도 물리, 화학적 반응이 없어 적층형 유전체 필터 재료로서 적합한 재료라고 판단된다.

W-1.5 ZrO2 복합재료 합성과 급속소결 (Synthesis and Rapid Consolidation of W-1.5 ZrO2 Composite)

  • 김성은;손인진
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.653-658
    • /
    • 2018
  • $ZrO_2$ is a candidate material for hip and knee joint replacements because of its excellent combination of biocompatibility, corrosion resistance and low density. However, the drawback of pure $ZrO_2$ is a low fracture toughness at room temperature. One of the most obvious tactics to cope with this problem is to fabricate a nanostructured composite material. Nanomaterials can be produced with improved mechanical properties(hardness and fracture toughness). The high-frequency induction heated sintering method takes advantage of simultaneously applying induced current and mechanical pressure during sintering. As a result, nanostructured materials can be achieved within very short time. In this study, W and $ZrO_2$ nanopowders are mechanochemically synthesized from $WO_3$ and Zr powders according to the reaction($WO_3+3/2Zr{\rightarrow}W+3/2ZrO_2$). The milled powders are then sintered using high-frequency induction heating within two minutes under the uniaxial pressure of 80MPa. The average fracture toughness and hardness of the nanostructured W-3/2 $ZrO_2$ composite sintered at $1300^{\circ}C$ are $540kg/mm^2$ and $5MPa{\cdot}m^{1/2}$, respectively. The fracture toughness of the composite is higher than that of monolithic $ZrO_2$. The phase and microstructure of the composite is also investigated by XRD and FE-SEM.

$BaTiO_3$ - $(Bi_{0.5}Ko_{0.5})TiO_3$계 세라믹의 PTC효과와 미세구조 (Microstructure and PTCR Behavior of Semiconducting (1-x)$BaTiO_3$ - x$(Bi_{1/2}K_{1/2})TiO_3$ Ceramics)

  • 박용준;정영훈;이영진;백종후;김대준;이우영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.336-336
    • /
    • 2008
  • A positive temperature coefficient of electrical resistivity (PTCR) was investigated in a ferroelectric lead-free perovskite-type compound $(Bi_{0.5}K_{0.5})TiO_3$ within $BaTiO_3$-based solid solution ceramics. The electrical properties and the microstructure of (1-x) $BaTiO_3$ - x $(Bi_{0.5}K_{0.5})TiO_3$ (BBKT) ceramics made using a conventional mixed and have been synthesized by an ordinary sintering technique. The Curie temperature was obviously increased with increasing of $(Bi_{0.5}K_{0.5})TiO_3$ content. The BKT ceramics (x=0.05) sintered at $1400^{\circ}C$ for 4h display low resistivity values of $10^1-10^2$ ohm cm at room temperature, PTCR effect(jump) of 1.05*$10^3$, and the Curie temperature of $T_c=141^{\circ}C$.

  • PDF

Fabrication and Characterization of Hydroxyapatite/Mullite and Tricalcium Phosphate/Al2O3 Composites Containing 30 wt% of Bioactive Components

  • Ha, Jung-Soo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.374-379
    • /
    • 2015
  • Mullite-matrix and $Al_2O_3$-matrix composites were fabricated with 30 wt% hydroxyapatite (HA) and tricalcium phosphate (TCP), respectively, as additives to give bioactivity. A diphasic gel process was employed to lower the densification temperature of the mullite matrix to $1320^{\circ}C$. A polymer complexation process was used to synthesize a TCP powder that was fully densified at $1250^{\circ}C$, for application to the matrix. For the HA/mullite composite, HA decomposed during sintering by reactions with the matrix components of $Al_2O_3$ and $SiO_2$, resulting in a mixture of $Al_2O_3$, TCP, and other minor phases with a low densification of less than 88% of the theoretical density (TD). In contrast, the TCP/$Al_2O_3$ composite was highly densified by sintering at $1350^{\circ}C$ to 96%TD with no reaction between the components. Different from the TCP monolith, the TCP/$Al_2O_3$ composite also showed a fine microstructure and intergranular fracture, both of which characteristics are advantageous for strength and fracture toughness.