Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.5.405

Effect of Li2O-Bi2O3 Addition on the Piezoelectric Properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 Ceramics  

Kim, Jae Hyuk (Department of Materials Science and Engineering, Korea University)
Kim, Shi Yeon (Korea Institute of Ceramic Engineering & Technology)
Choi, Jeoung Sik (Korea Institute of Ceramic Engineering & Technology)
Yeo, Dong-Hun (Korea Institute of Ceramic Engineering & Technology)
Shin, Hyo-Soon (Korea Institute of Ceramic Engineering & Technology)
Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
Publication Information
Journal of Powder Materials / v.26, no.5, 2019 , pp. 405-409 More about this Journal
Abstract
Piezoelectric ceramic specimens with the $Pb(Mg_{1/3}Nb_{2/3})_{0.65}Ti_{0.35}O_3$ (PMN-PT) composition are prepared by the solid state reaction method known as the "columbite precursor" method. Moreover, the effects of the $Li_2O-Bi_2O_3$ additive on the microstructure, crystal structure, and piezoelectric properties of sintered PMN-PT ceramic samples are investigated. The addition of $Li_2O-Bi_2O_3$ lowers the sintering temperature from $1,200^{\circ}C$ to $950^{\circ}C$. Moreover, with the addition of >5 wt.% additive, the crystal structure changes from tetragonal to rhombohedral. Notably, the sample with 3 wt.% additive exhibits excellent piezoelectric properties ($d_{33}=596pC/N$ and Kp = 57%) and a sintered density of $7.92g/cm^3$ after sintering at $950^{\circ}C$. In addition, the sample exhibits a curie temperature of $138.6^{\circ}C$ at 1 kHz. Finally, the compatibility of the sample with a Cu electrode is examined, because the energy-dispersive X-ray spectroscopy data indicate the absence of interdiffusion between Cu and the ceramic material.
Keywords
PMN-PT; $Li_2O-Bi_2O_3$; Low-temperature sintering; Piezoelectrics; Cu electrode;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. A. Randall, A. Kelnberger, G. Y. Yang, R. E. Eitel and T. R. Shrout: J. Electroceram., 14 (2005) 177.   DOI
2 J. S. Choi, C. H. Lee, H. S. Shin, D. H. Yeo and J. H. Lee: J. Korean Inst. Electr. Electron. Mater. Eng., 31 (2018) 19.   DOI
3 K. K Fan, Y. P. Wang and Y. Yang: Energy Harvesting and Systems, 2 (2015) 113.   DOI
4 J. C. Ho, K. S. Liu and I. N. Lin: J. Mater. Sci., 28 (1993) 4497.   DOI
5 Q. Zhang, W. Pan, A. Bhalla and L. E. Cross: J. Am. Ceram. Soc., 72 (1989) 599.   DOI
6 Y. C. Zhang, W. N. Ye, Z. Z. Yang, C. J. Lu and L. H. Xia: J. Mater. Sci.: Mater. Electron., 22 (2011) 91.   DOI
7 S. Zhao, Q. Li, Y. Feng and C. Nan: J. Phys. Chem. Solids, 70 (2009) 639.   DOI
8 M. Massuda, K. Bridger, J. D. Prodey and S. M. Pilgrim: Ferroelectrics, 158 (1994) 337.   DOI
9 O. Bouquim, M. Lejeune and J. P. Boilot: J. Am. Ceram. Soc., 74 (1991) 1152.   DOI
10 Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru and M. Koizumi: J. Am. Ceram. Soc., 52 (1969) 516.   DOI
11 K. H. Yoon, Y.-S. Cho, D.-H. Lee and D.-H. Kang: J. Am. Ceram. Soc., 76 (1993) 1373.   DOI
12 S. L. Swartz, T. R. Shrout, W. A. Schulze and L. E. Cross: J. Am. Ceram. Soc., 67 (1984) 311.   DOI
13 J. H. Park, K. S. Hong and S. J. Park: J. Korean Ceram. Soc., 33 (1996) 391.
14 L. Wang, C. Mao, G. Wang, G. Du, R. Liang and X. Dong: J. Am. Ceram. Soc., 96 (2013) 24.   DOI
15 Y. Zeng, F. Yao, G. Zhang, S. Liu, S. Jiang, Y. Yu, J. He, L. Zhang and J. Yi: Ceram. Int., 39 (2013) 3709.   DOI
16 L. Gao, H. Guo, S. Zhang and C. A. Randall, N. J. Donnelly and C. A. Randall: Actuators, 5 (2016) 8.   DOI
17 J. H. Park, I. T. Kim, D. Y. Kim, S. Y. Cho, K. S. Hong and S. J. Park: J. Korean Ceram. Soc., 33 (1996) 556.