• Title/Summary/Keyword: low-temperature recovery

Search Result 360, Processing Time 0.023 seconds

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy (Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향)

  • 이상용;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

A Study on Bacterial Leaching of Low-Grade Copper Mineral(V) (저품위 동광석의 세균침출에 관한 연구 5)

  • 민봉희;박원구;이강순
    • Korean Journal of Microbiology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 1974
  • It was convinced that with a relatively small capital investment and with a low operating cost, appreciable amounts of cement copper could be produced from low-grade minerals by the application of a bacterial leaching method. For the recovery of cement copper from the impure pregnant solution, direct precipitation of copper with tin plates by a bacterial leaching method was feasible. The results obtained were as follows: 1)In order to remove the cement copper from the reducing metal, aeration and agitation method were more effective and economic than shaking method. 2)The rate of copper recovery from the pregnant solution was accerelated according to increasing quantities of reducing metal. However, the excess of reducing metal reduced the grade of cement copper. 3)Among the comparative experiments of copper recovery at each reaction temperature of $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, the recovery rate of copper at $30^{\circ}C$from the pregnant solution was highest. 4)Direct cementation method on iron-containing metal was an excellent method for the recovery of cement copper in bacterial leaching.

  • PDF

Development of 1MW Organic Rankine Cycle System for Industrial Waste Heat Recovery Put English Title Here (산업배열회수용 1MW급 유기랭킨 사이클 시스템 개발)

  • Cho, H.C.;Park, H.S.;Lee, Y.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.776-781
    • /
    • 2001
  • To enhance thermal efficiency of thermal facility through recovery of low and medium temperature waste heat, 1MW organic Rankine cycle system was designed and developed. The exhaust gases of $175^{\circ}C$ at two 100MW power plants in pohang steel works were selected as the representative of low and medium temperature waste heat in industrial process for the heat source of the organic Rankine cycle system. HCFC-123, a kind of harmless refrigerant, was chosen as the working fluid for Rankine cycle. The organic Rankine cycle system with selected exhaust gases and working fluid was designed and constructed. From the operation, it was confirmed that the organic Rankine cycle system is available for low and medium temperature waste heat recovery in industrial process. The optimum operating manuals, such as heat-up of hot water, turbine start-up, and the process of electric power generation, were derived. However, electric power generated was not 1MW as designed but only 670kW. It is due to deficiency of pump capacity for supply of HCFC-123. So it is necessary to increase the pump capacity or to decrease the pressure loss in pipe for more improved HCFC-123 supply.

  • PDF

A Study on the Improvement of Efficiency of Heat Transfer on the Heat Recovery Ventilator with Rotating Porous Disk (로터리형 폐열회수 환기장치의 열전달 성능 향상에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1352-1357
    • /
    • 2014
  • In the present study, the heat transfer performance on the heat recovery ventilator with rotary disk were experimentally investigated. The temperature of entrance and exit of the heat recovery ventilator, air flow distribution of high temperature air and low temperature air, heat flux and the overall heat transfer coefficients are estimated from the experimental results. As the number of revolution of rotary disk, the air flow distribution increase, heat flux and overall heat transfer coefficients increase.

Performance Test of Low Temperature Waste Heat Recovery Heat Exchanger Using Self-excited Oscillating Heat Pipe (자려 진동형 히트 파이프를 이용한 저온 폐열 회수 열교환기의 성능 실험)

  • 이욱현;이종현;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.853-859
    • /
    • 2000
  • In this study, low temperature waste heat recovery heat exchanger was developed using a principle of self-excited oscillating heat pipe. The heat exchanger of serpentine type was composed of extruded flat aluminum tube with 6 channels (3 nm$\times$ 2.75nm) and louvered fin. The heat transfer area density of heat exchanger was $331.9 m^2/m^3$. Working fluid is R141b and charge ratio was 40% by volume. Heat transfer rate and the effectiveness of heat exchanger was primary concern of this study. As a result, the effectiveness of heat exchanger was about 0.4-0.67, and recovered waste heat rate was about 4.5 kW per one unit of heat exchanger.

  • PDF

Low Temperature Pyrolysis for Valuable Resources Recovery from Waste Wire (I) (폐전선으로부터 유가자원 회수를 위한 저온열분해(I))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.223-226
    • /
    • 2009
  • In this study, we investigated the recovery of copper and synthetic fuel from the waste wire by low temperature pyrolysis which can overcome problems of the recent incineration methods. Through thermal decomposition process of waste wire, we achieved the big advantage of getting usable resources as the forms of copper and fuel with a very high value. The TG/DTA and small-scale reaction experiments were carried out to determine an optimum temperature for waste wire pyrolysis. And the pyrolysis was done at 350, 450, and $550^{\circ}C$, respectively, and heating rate of the TG/DTA was $5^{\circ}C/min$ untill $700^{\circ}C$. The result shows that the optimum temperature range for dehydrochlorination of PVC was $280{\sim}350^{\circ}C$, as a lower temperature range than $400{\sim}550^{\circ}C$ of PE and PP. Practically over 95% of copper metal and synthetic fuel, which has the 8027 kcal/kg as a calorific value, were recovered from the waste wire samples.

Effect of Temperature, Pressure, and Air Flow Rate on VOCs Desorption for Gasoline Vapor Recovery (유증기 회수를 위한 VOCs 탈착에 미치는 온도, 압력 및 공기유량의 영향)

  • Lee, Song-Woo;Na, Young-Soo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1131-1139
    • /
    • 2013
  • Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature $25^{\circ}C$, desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.