• Title/Summary/Keyword: low-temperature recovery

Search Result 360, Processing Time 0.032 seconds

A Study on the Heat Recovery Performance of Water Fludized-Bed Heat Exchanger (물유동층 열교환기의 열회수성능 연구)

  • 김한덕;박상일;이세균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.690-696
    • /
    • 2003
  • This paper presents the heat recovery performance of water fluidized-bed heat exchanger. Temperature and humidity ratio of waste gas are considered as important parameters in this study. Therefore, the heat recovery rate through water fluidized-bed heat exchanger for exhaust gases with various temperatures and humidity ratios can be estimated from the results of this study. Mass flow ratio (the ratio of mass flow rate of water to that of gas) and temperature of inlet water are also considered as important operating variables. Increase of heat recovery rate can be obtained through either high mass flow ratio or low temperature of inlet water with resultant low recovered temperature. The heat recovery performance with the mass flow ratio of about up to 10 has been investigated. The effect of number of stages of water fluidized-bed on the heat recovery performance has been also examined in this study.

Comparison of Cardiopulmonary Effects and Recovery between Total Intravenous Anesthesia with Propofol and Volatile Induction/maintenance Anesthesia with Isoflurane in Beagle Dogs (비글견에서 Propofol 완전정맥마취와 Isoflurane 휘발성 유도/유지 마취 시 심폐기능과 회복의 비교)

  • Lee Soo-Han
    • Journal of Veterinary Clinics
    • /
    • v.22 no.3
    • /
    • pp.259-263
    • /
    • 2005
  • To compare cardiopulmonary effects and recovery between total intravenous anesthesia (TIVA) with propofol (PRO group, n=5) and volatile induction/maintenance anesthesia (VIMA) with isoflurane (ISO group, n=5), we investigated changes of heart rate, $SpO_2$, arterial pressure, rectal temperature and respiratory rate during 60 minute anesthesia and 40 minute recovery period in beagle dogs, and investigated recovery (extubation, head lift, sternal position and righting) after 60 minute anesthesia. Rectal temperature was significantly low in ISO group (p<0.05) from 10 to 100 minute. Heart rate was significantly low in ISO group (p<0.05) at 40, 50, 60 minute. Respiratory rate was significantly low in PRO group (p<0.05) at induction and 70 minute. $SpO_2$ tendency was similar. Systolic arterial pressure (SAP) was significantly low in ISO group (p<0.05) at induction and during anesthesia. Recovery was similar in two groups. We concluded that TIVA with propofol is useful in stabilizing rectal temperature and arterial pressure during anesthesia and provide fast and stable recovery.

Effects of Process Variables on The Electrochemical Recovery of Palladium in A HCl Solution

  • Kim, Min-Seuk;Lee, Jae-Chun;Kim, Won-Baek
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • This study investigated the electrochemical recovery of palladium in a HCl solution that is used for palladium leaching. The high acidity of HCl solution and the low concentration of Pd ions increased the cathodic overpotential and reduced the limiting current density. Lowering the current density produced dense deposits; however, they were under high tensile stress. Raising the temperature affected both the densification and the stress, which enabled the attainment of dense Pd deposits under low stress. Lowering the current density and raising the temperature up to 70$^{\circ}C$ was recommended for the recovery of palladium as sound bulk Pd deposits. Current efficiency was over 85% at the initial stage of recovery may decrease the current efficiency, since a low Pd ion concentration results in a low limiting current density.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.

Influence of Working Fluids to Heat Transfer Characteristics of Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery

  • Lee, Wook-Hyun;Im, Yong-Bin;Kim, Ju-Won;Kim, Jeung-Hoon;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Heat transfer characteristics of a heat exchanged for low temperature waste heat recovery using oscillating capillary tube heat pipe (OCHP) were evaluated against the charging ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working a 2.6mm in outside diameter, 1.44mm in inside diameter with 101m length and 140 turns. Charging ratio of working fluid was 40% and 50%. water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and 9~27 $4kg/m^2s$, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-142b and R-290 and it was proportional to Figure of Merit for thermosyphon. As a result, it was thought that R-22 was the most reasonable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Influence of Working Fluids to Heat Transfer Characteristics of the Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery (저온 폐열회수용 진동세관형 히트파이프 열교환기의 작동 유체에 따른 열전달 특성)

  • 이욱현;임용빈;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.659-666
    • /
    • 2000
  • Heat transfer characteristics of a heat exchanger for low temperature waste heat recovery using oscillating capillary tube heat pipe were evaluated against the charge ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working fluids. The heat exchanger was composed of heat pipe with capillary tube bundles, having a 2.6mm in outer diameter, 1.4mm in inner diameter with 101m long, and 40 turns. Charge ratio of working fluid was 40% and 50%. Water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and9~27 kg /$m^2s$,, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-l42b and R-290 and it was proportional to Figure of merit for thermosyphons. As a result, it was thought that R-22 was the most suitable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery (저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구)

  • 안영태;이욱현;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF

Low Temperature Pyrolysis for the Recovery of Value-added Resources from Waste Wire (II) (폐전선으로부터 유가자원 회수를 위한 저온열분해(II))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.553-556
    • /
    • 2009
  • This research aims at the recovery of valuable resource and more efficient waste treatment through solving the problem of pyrolysis technique. At first, in order to raise the economical efficiency, the low temperature pyrolysis experiment was carried out at the temperature of $450^{\circ}C$, which is lower than the common pyrolysis temperature area ($500{\sim}1000^{\circ}C$). We could lower the reaction temperature and reduce the reaction time by using catalyst. Also we used indirect heat for the purpose of maintaining favorable anoxic condition. As a result, we could raise the recovery rate of the valuable copper and synthetic fuel oil. Furthermore, the by-products and flue gas could be treated more effectively as well. The flue gas passed through two stage neutralization tank, so that dioxin hardly occurs and other environment items are controlled fairly well to the environmental standard. Throughout this study, we produced the low temperature pyrolysis equipment (GTPK-001) as mentioned above, and we found out that the technique can be commercialized economically as well as environmentally friendly.

The Effect of T90 Temperature on Exhaust Emissions in Low-temperature Diesel Combustion (저온 디젤 연소에서 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.72-77
    • /
    • 2011
  • This study is to investigate the effect of the distillation temperature in ultra low sulfur diesel fuel on exhaust emissions in the low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low temperature diesel combustion was achieved by adopting an external high EGR rate with a strategic injection control. The engine was operated at 1500 rpm 2.6 bar BMEP. The 90% distillation recovery temperature (T90) was $270^{\circ}C$ and $340^{\circ}C$ for the respective cetane number (CN) 30 and 55. It was found that there exists no distinctive discrepancy on exhaust emissions with regards to the different T90s. The high CN (CN55) fuels follow the similar trend of exhaust emissions as observed in CN30 fuels' except that high T90 fuel (CN55-T340) produced higher PM compared to low T90 fuel (CN55-T270). This may come from that high T90 plays an active role in aggravating the degree of fuel-air mixture preparedness before ignition.

Growth Responses and Regrowth to Low Temperature of Nine Native Moss Species

  • Gong, Gyeong Yeop;Jeong, Kyeong Jin;Lee, Sang Woo;Yun, Jae Gill
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.6
    • /
    • pp.575-582
    • /
    • 2019
  • Moss is used as an important material in indoor landscaping as well as outdoor landscaping. Moss is vivid green during growth and excellent in ornamental value. But when temperature drops, moss stops growth, turns brown or loses its ornamental value. In the present experiment, for the purpose of classifying native mosses according to the growth response to low temperature, the temperature of the plant growth chamber was set to 15℃/5℃ (16h/8h, day/night) and 5℃ (24h) for 8 weeks using nine native moss species. Thereafter, the temperature of the plant growth chamber was set to 20℃, and then the changes of moss block area and moss color were measured. The changes of moss block area and moss color were measured using a Photoshop program, after each moss block was photographed. As a result, Atrichum undulatum (Hedw.). Beauv., Etodon luridus (Griff.) A. Jaeger, Bachythecium plumosum (Hedw.) Schimp, Plagiomnium cuspidatum (Hedw.) T.J. Kop, and Hypnum plumaeforme Wilson showed a small decrease in moss block area at low temperature, and their recovery were the fastest at 20℃. These three species had higher green values at low temperature compared to other species, and the greenness increased rapidly at 20℃. On the other hand, Atrichum undulatum (Hedw.). Beauv., Marchantia polymorpha L., and Thuidium cymbifolium (Mitt.) A. Jaeger showed the smallest block area at low temperature and the lowest recovery even at 20℃. Their green values also decreased significantly at low temperature, and maintained low green value even at 20℃. These results showed that these three moss species are sensitive to low temperature. The remaining Myuroclada maximowiczii, Plagiomnium cuspidatum, and H. erectiusculum showed moderate responses to low temperature compared to other six species of mosses.