• 제목/요약/키워드: low-temperature oxide

검색결과 1,089건 처리시간 0.031초

Uniform Field Emission from Carbon Nanotubes Fabricated by CO Disproportionation

  • Lee, Jin-Seung;Suh, Jung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1827-1831
    • /
    • 2003
  • Field emission of carbon nanotubes (CNTs) fabricated by disproportionation of CO has been studied. CNTs fabricated on well-ordered Co nanowire arrays formed on the porous anodic aluminum oxide templates were well graphitized, uniform in diameter and aligned vertically with respect to the plane of the template, and showed a good field emission property. Very uniform emissions were observed from the CNTs fabricated at relatively low temperature, $500-600^{\circ}C$. Low fabrication temperature such as $500^{\circ}C$ could make it possible to fabricate CNTs on soda lime glass, a low-cost substrate, for display panel.

$Sr_2$($Ta_{1-x}$$Nb_{x}$)$_2$$O_{7}$ 세라믹스의 저온소성과 유전특성 (Low Temperature Sintering and Dielectric Properties of $Sr_2$($Ta_{1-x}$$Nb_{x}$)$_2$$O_{7}$ Ceramics)

  • 남효덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.8-12
    • /
    • 1994
  • Solid solutions $Sr_2$($Ta_{1-x}$$Nb_{x}$)$_2$$O_{7}$ (x = 0.0 - 1.0) composed of strontium-tantalate (low Curie temperature) and strontium-niobate (high Curie temperature) were prepared by the conventional mixed oxide method and the molten salt synthesis method (flux method). Phase relation, sintering temperature, grain-orientation and dielectric properties were investigated for sintered ceramic samples with different compositions. Both Curie temperature and dielectric constant at Curie temperature were increased, and sintering behavior and the degree of grain-orientation were improved with the increase of Nb content. Single phase $Sr_2$$Nb_2$$O_{7}$ powder was synthesized by using flux method at lower temperatures, and sintering temperature was also reduced by using flux method derived powder than using mixed-oxide derived powder. Sintering characteristics and dielectric properties of specimens prepared by flux method were better than those derived through the conventional method.

Low temperature deposition of carbon nanofilaments using vacuum-sublimated $Fe(CO)_5$ catalyst with thermal chemical vapor deposition

  • Kim, Nam-Seok;Kim, Kwang-Duk;Kim, Sung-Hoon
    • 한국결정성장학회지
    • /
    • 제17권1호
    • /
    • pp.18-22
    • /
    • 2007
  • Carbon nanofilaments were deposited on silicon oxide substrate by thermal chemical vapor deposition method. We used $Fe(CO)_5$ as the catalyst for the carbon nanofilaments formation. Around $800^{\circ}C$ substrate temperature, the formation density of carbon nanofilaments could be enhanced by the vacuum sublimation technique of $Fe(CO)_5$, compared with the conventional spin coating technique. Finally, we could achieve the low temperature, as low as $350^{\circ}C$, formation of carbon nanofilaments using the sublimated Fe-complex nanograins with thermal chemical vapor deposition. Detailed morphologies and characteristics of the carbon nanofilaments were investigated. Based on these results, the role of the vacuum sublimation technique for the low temperature deposition of carbon nanofilaments was discussed.

BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성 (Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode)

  • 정재원;유충열;주종훈;유지행
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

적층형 태양전지를 위한 비정질실리콘계 산화막 박막태양전지의 광흡수층 및 반사체 성능 향상 기술 (Advances in Absorbers and Reflectors of Amorphous Silicon Oxide Thin Film Solar Cells for Tandem Devices)

  • 강동원
    • 한국전기전자재료학회논문지
    • /
    • 제30권2호
    • /
    • pp.115-118
    • /
    • 2017
  • Highly photosensitive and wide bandgap amorphous silicon oxide (a-$SiO_x$:H) films were developed at low temperature ranges ($100{\sim}150^{\circ}C$) with employing plasma-enhanced chemical vapor deposition by optimizing $H_2/SiH_4$ gas ratio and $CO_2$ flow. Photosensitivity more than $10^5$ and wide bandgap (1.81~1.85 eV) properties were used for making the a-$SiO_x$:H thin film solar cells, which exhibited a high open circuit voltage of 0.987 V at the substrate temperature of $100^{\circ}C$. In addition, a power conversion efficiency of 6.87% for the cell could be improved up to 7.77% by employing a new n-type nc-$SiO_x$:H/ZnO:Al/Ag triple back-reflector that offers better short circuit currents in the thin film photovoltaic devices.

Study on IZTO and ITO Films Deposited on PI Substrate by Pulsed DC Magnetron Sputtering System

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Lee, Chang-Hun;Bae, Jung-Ae;Choi, Byung-Hyun;Ji, Mi-Jung;Kim, Young-Sung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.93-93
    • /
    • 2011
  • The Indium Zinc Tin Oxide (IZTO) and Indium Tin Oxide (ITO) thin films are grown on PI substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt.%, ZnO 15 wt.%, SnO2 15 wt.%) and ITO (In2O3 90wt.%, SnO2 10wt.%). The structural, electrical, and optical properties are investigated. The IZTO thin films deposited at low temperature showed relatively low electrical resistivity compared to ITO thin films deposited at low temperature. As a result, we could prepare the IZTO thin films with the resistivity as low as $5.6{\times}10^{-4}({\Omega}{\cdot}m)$. Both of the films deposited on PI substrate showed an average transmittance over 80% in visible range (400.800nm). Overall, IZTO thin film is a promising candidate as an alternative TCO material to ITO in flexible and OLED devices.

  • PDF

INFLUENCE OF MECHANICAL ALLOYING ATMOSPHERES ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 15Cr ODS STEELS

  • Noh, Sanghoon;Choi, Byoung-Kwon;Kang, Suk Hoon;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.857-862
    • /
    • 2014
  • Mechanical alloying under various gas atmospheres such as Ar, an Ar-$H_2$ mixture, and He gases were carried out, and its effects on the powder properties, microstructure and mechanical properties of ODS ferritic steels were investigated. Hot isostatic pressing and hot rolling processes were employed to consolidate the ODS steel plates. While the mechanical alloyed powder in He had a high oxygen concentration, a milling in Ar showed fine particle diameters with comparably low oxygen concentration. The microstructural observation revealed that low oxygen concentration contributed to the formation of fine grains and homogeneous oxide particle distribution by the Y-Ti-O complex oxides. A milling in Ar was sufficient to lower the oxygen concentration, and this led a high tensile strength and fracture elongation at a high temperature. It is concluded that the mechanical alloying atmosphere affects oxygen concentration as well as powder particle properties. This leads to a homogeneous grain and oxide particle distribution with excellent creep strength at high temperature.

Flexible Thin Film Encapsulation and Planarization Effectby Low Temperature Flowable Oxide Process

  • Yong, Sang Heon;Kim, Hoonbea;Chung, Ho Kyoon;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.431-431
    • /
    • 2013
  • Flexible Organic Light Emitting Diode (OLED) displays are required for future devices. It is possible that plastic substrates are instead of glass substrates. But the plastic substrates are permeable to moisture and oxygen. This weak point can cause the degradation of fabricated flexible devices; therefore, encapsulation process for flexible substrate is needed to protect organic devices from moisture and oxygen. Y.G. Lee et al.(2009) [1] reported organic and inorganic multilayer structure as an encapsulation barrier for enhanced reliability and life-time.Flowable Oxide process is a low-temperature process which shows the excellent gap-fill characteristics and high deposition rate. Besides, planarization is expected by covering dust smoothly on the substrate surface. So, in this research, Bi-layer structured is used for encapsulation: Flowable Oxide Thin film by PECVD process and Al2O3 thin film by ALD process. The samples were analyzed by water vapor transmission rate (WVTR) using the Calcium test and film cross section images were obtained by FE-SEM.

  • PDF

반응성 직류마그네트론 스퍼터링에 의한 ITO박막 형성에 관한 연구 (The study on formation of ITO by DC reacrive magnetron sputtering)

  • 하홍주;조정수;박정후
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.699-707
    • /
    • 1995
  • The material that is both conductive in electricity and transparent to the visible ray is called transparent conducting thin film. It has many fields of application such as Solar Cell, Liquid Crystal display, Vidicon on T.V, transparent electrical heater, selective optical filter, and a optical electric device , etc. In the recent papers on several TCO( transparent conducting oxide ) material, the study is mainly focusing on ITO(indium tin oxide) because ITO shows good results on both optical and electrical properties. Nowaday, in the development of LCD(Liquid Crystal display), the low temperature process to reduce the production cost and to deposit ITO on polymer substrate (or low melting substrate) has been demanded. In this study, we prepared indium tin oxide(ITO) by a cylindrical DC magnetron sputtering with Indium-tin (9:1) alloy target instead of indium-tin oxide target. The resistivity of the film deposited in oxygen partial pressure of 5% and substrate temperature of 140.deg. C. is 1.6*10$\^$-4/.ohm..cm with 85% optical transmission in viaible ray.

  • PDF

C-V Technique을 이용한 low-k polyimide로의 구리의 drift diffusion 연구 (Use of a capacitance voltage technique to study copper drift diffusion in low-k polyimide)

  • 최용호;이헌용;김지균;김정우;김유경;박진우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.137-140
    • /
    • 2003
  • Cu+ ions drift diffusion in different dielectric materials is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 1.lMV/cm and temperature $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$ for 1H, 2H, 5H. The Cu+ ions drift rate of polyimide$(2.8{\leq}k{\leq}3.2)$ is considerably lower than thermal oxide. Also Cu+ drift rate of polyimide is similar to PECVD oxide. But, polyimide film is even more resistant to Cu drift diffusion and thermal effect than Thermal oxide, PECVD oxide: This results got a comparative reference. The important conclusion is that polyimide film is strongly dielectric material by thermal effect and Cu drift diffusion.

  • PDF