• Title/Summary/Keyword: low-rise buildings

Search Result 385, Processing Time 0.023 seconds

The Post-Occupancy Evaluation of Outdoor Environments in Bundang Model Complex: With Super High-rise.High-rise.Low-rise Apartments in Hyundai Apartment Complex (분당시범단지 초고층.고층.저층단지의 옥외환경평가 : 현대아파트 단지를 중심으로)

  • 김유일;함지현;강석희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.130-139
    • /
    • 1999
  • The survey site, the Hyundai Apartment Complex in the Bundang Model Complex, includes three housing layout types; super high-rise, high-rise and low-rise apartment buildings. The site includes artificial ground over underground parking lots. The overall objective of this study is to evaluate social and physical factors of housing environments in each types of layout. The data has been complied from residents of apartment through questionnaire. The questionnaire include elements of neighborhood, outdoor space, parking zones, and the overall complex design in each layout types. The predictors of outdoor space satisfaction in apartment housing complex are found as follows: "abundance of trees in quantity", "the role as front yards", "harmony of buildings with landscape", "the more distance between buildings" and "maintenance quality of site". Layout of super high-rise apartment site is most satisfied. Introduction of car-free deck space is favored by resident because of safty and quiet resting area. However the low quality of green and lack of shades on the artificial land are identified as problems.on the artificial land are identified as problems.

  • PDF

Ductility demands and reduction factors for 3D steel structures with pinned and semi-rigid connections

  • Llanes-Tizoc, Mario D.;Reyes-Salazar, Alfredo;Ruiz, Sonia E.;Bojorquez, Eden;Bojorquez, Juan;Leal Graciano, Jesus M.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.469-485
    • /
    • 2019
  • A numerical investigation regarding local (${\mu}_L$) and story (${\mu}_S$) ductility demand evaluation of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF), is conducted in this study. The interior connections are modeled, firstly as perfectly pinned (PP), and then as semi-rigid (SR). Three models used in the SAC steel project, representing steel buildings of low-, mid-, and high-rise, are considered. The story ductility reduction factor ($R_{{\mu}S}$) as well as the ratio ($Q_{GL}$) of $R_{{\mu}S}$ to ${\mu}_L$ are calculated. ${\mu}_L$ and ${\mu}_S$, and consequently structural damage, at the PMRF are significant reduced when the usually neglected effect of SR connections is considered; average reductions larger than 40% are observed implying that the behavior of the models with SR connections is superior and that the ductility detailing of the PMRF doesn't need to be so stringent when SR connections are considered. $R_{{\mu}S}$ is approximately constant through height for low-rise buildings, but for the others it tends to increase with the story number contradicting the same proportion reduction assumed in the Equivalent Static Lateral Method (ESLM). It is implicitly assumed in IBC Code that the overall ductility reduction factor for ductile moment resisting frames is about 4; the results of this study show that this value is non-conservative for low-rise buildings but conservative for mid- and high-rise buildings implying that the ESLM fails evaluating the inelastic interstory demands. If local ductility capacity is stated as the basis for design, a value of 0.4 for $Q_{GL}$ seems to be reasonable for low- and medium-rise buildings.

Seismic Capacity Evaluation of Low-Rise Reinforced Concrete Buildings in Korea (국내 저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok;Kim, Yong-In;Min, Kyung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.241-244
    • /
    • 2008
  • The authors proposed a new rapid-screening method for more reasonably evaluating seismic capacities of medium and low-rise RC buildings controlled by both shear and flexure in Ref. [1]. The method proposed in Ref. [1] was based on relationships between required strengths of each failure system for ductility factors and damage degrees of overall system derived from the view-point of ductility factors. The proposed method was also verified using observed real damage data of low-rise RC buildings caused by past earthquakes. Results indicated that the methodology proposed in Ref. [1] compares well with real damages and is a useful strategy for rapidly identifying low-rise RC buildings having high potential seismic risk. In this study, in order to verify the applicability of the new methodology proposed in Ref. [1] to real RC building systems, seismic capacities of existing eleven low-rise RC buildings in Korea are evaluated based on the new method.

  • PDF

Dense Downtown vs. Suburban Dispersed: A Pilot Study on Urban Sustainability

  • Wood, Antony;Du, Peng
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.113-129
    • /
    • 2017
  • This paper presents the initial findings of a ground-breaking two-year CTBUH-funded research project investigating the real environmental and social sustainability of people's lifestyles in a number of high-rise residential towers in downtown Chicago, and a comparable number of low rise homes in suburban Oak Park, Chicago - based on actual energy bills and other real data. The study is ground-breaking because, to date, similar studies have been mostly based on very large data sets of generalized data regarding whole-city energy consumption, or large-scale transport patterns, which often misses important nuances. This study has thus prioritized quality of real data (based on around 250 households in both high rise and low rise case studies), over quantity. In both urban and suburban cases, the following factors have been assessed: (i) home operational energy use, (ii) embodied energy of the dwelling, (iii) home water consumption, (iv) mobility and transport movements, (v) urban/suburban Infrastructure, and (vi) quality of life. The full results of this seminal study will be published in the form of a CTBUH Research Report publication in 2017. Presented below is an overview of the initial (and, currently, unverified) findings of the research, together with the limitations of the study that should be taken into account, as well as future plans for developing this important pilot study.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

Wind pressure coefficients on low-rise structures and codification

  • Letchford, Chris;Holmes, J.D.;Hoxey, Roger;Robertson, Adam
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.283-294
    • /
    • 2005
  • This paper describes the work of the Working Group on wind pressure coefficients on low-rise structures, one of the groups set up by the International Association of Wind Engineering in 1999. General aspects of wind loading on low-rise structures are summarized. The definition, derivation and codification of loading coefficients is described. Comparisons of pressure coefficients on low rise structures are made between a selection of wind loading standards. Recommendations for consistency and for the harmonization of these coefficients are given.

Investigation of Typhoon Wind Speed Records on Top of a Group of Buildings

  • Liu, Min;Hui, Yi;Li, Zhengnong;Yuan, Ding
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.313-324
    • /
    • 2019
  • This paper presents the analysis of wind speeds data measured on top of three neighboring high-rise buildings close to a beach in Xiamen city, China, during Typhoon "Usagi" 2013. Wind tunnel simulation was carried out to validate the field measurement results. Turbulence intensity, turbulence integral scale, power spectrum and cross correlation of recorded wind speed were studied in details. The low frequency trend component of the typhoon speed was also discussed. The field measurement results show turbulence intensity has strong dependence to the wind speed, upwind terrain and even the relative location to the Typhoon center. The low frequency fluctuation could severely affect the characteristics of wind. Cross correlation of the measured wind speeds on different buildings also showed some dependence on the upwind terrain roughness. After typhoon made landfall, the spatial correlation of wind speeds became weak with the coherence attenuating quickly in frequency domain.

The Influence on the Stack Effect with the Opening of Smoke Ventilators in High-rise Buildings (초고층 건축물에서 배연창 개방이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyue;Yeo, Yong-Ju;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.209-213
    • /
    • 2008
  • The effects on the performance of natural smoke exhaust ventilators installed in high-rise buildings were analyzed depending on the wind velocities and smoke temperatures using CONTAMW tool. The results showed that the smoke exhaust ventilators can maintain given performances in such conditions as low smoke temperatures and low wind velocities. However, high smoke temperatures and high wind velocities can prevent the smoke ventilators to exhaust smokes from the fire room. Significant changes in stack effects in high-rise buildings can also occur with the opening of smoke ventilators in the fire floor.

  • PDF

Overview of Seismic Loads and Application of Local Code Provisions for Tall Buildings in Baku, Azerbaijan

  • Choi, Hi Sun;Sze, James;Ihtiyar, Onur;Joseph, Leonard
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Baku, the capital of Azerbaijan, has seen a boom in construction in recent years. The old Baku city has been rapidly transforming into a new hub of high-rise buildings and lively cultural centers hosting the Euro Vision Song Contest in 2012 and European Games in 2015. A major population shift to Baku from its suburbs and the countryside has resulted in the doubling of Baku's population in the 4 years between 2009 and 2013. As of January 2013, Baku's population reached four million people, 43% of the citizens in Azerbaijan according to The State Statistical Committee of Azerbaijan. With this trend, the city needs more high-rise buildings to accommodate rapidly increasing demands for more housing and business space. Until the Azerbaijan Seismic Building Code was published in 2010 and became effective, many different seismic criteria, in terms of building codes and seismic intensities, were used for all new high-rise projects in Baku. Some designers used the SNIP (Russian) code with seismic level 9 or level 8 with 1 point penalty. Others used the Turkish code with Seismic Zone 1, UBC 97 with Zone 2 through 4, or IBC with Sa = 0.75 g through 1.0 g. The seismic intensity is now clarified with the Azerbaijan Seismic Building Code. However, the Azerbaijan Seismic Building Code is appropriate for low-rise buildings applications but may be inappropriate for high-rise project applications. This is because the code-defined response spectrum yields unrealistically conservative seismic forces for high-rise buildings with long periods, as compared to those determined by other internationally accepted building codes. This paper provides observations and recommendations for code-based seismic load assessment of high-rise buildings in the Baku area.

Wind Environment Assessment around High-Rise Buildings through Wind Tunnel Test and Computational Fluid Dynamics

  • Min-Woo Park;Byung-Hee Nam;Ki-Pyo You;Jang-Youl You
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.321-329
    • /
    • 2022
  • High-rise buildings constructed adjacent to low-rise structures experience frequent damage caused by the associated strong wind. This study aimed to implement a standard evaluation of the wind environment and airflow characteristics around high-rise apartment blocks using wind tunnel tests (WTT) and computational fluid dynamics (CFD) simulations. The correlation coefficient between the CFD and wind tunnel results ranged between 0.6-0.8. Correlations below 0.8 were due to differences in the wake flow area range generated behind the target building according to wind direction angle and the effect of the surrounding buildings. In addition, a difference was observed between the average velocity ratio of the wake flow wind measured by the WTT and by the CFD analysis. The wind velocity values of the CFD analysis were therefore compensated, and, consequently, the correlations for most wind angles increased.