• Title/Summary/Keyword: low-oxygen

Search Result 2,459, Processing Time 0.026 seconds

The Effect of Chemical Pretreatment on Steam Explosion and Oxygen-alkali Pulping of Oak Wood (참나무재의 약액함침 처리가 폭쇄 및 산소-알칼리펄프화에 미치는 영향)

  • 박승영;최태호;조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.75-83
    • /
    • 2001
  • The potential of oxygen delignification is a powerful tool to reduce detrimental environmental effects. This study was performed to investigate the effect of steam explosion treatment of chemically treated oak wood on oxygen-alkali pulping. Pulp yield during steam explosion treatment by ${Na_2}{O_3}$-NaOH impregnation was higher than the other impregnation chemicals. Also, NaOH extraction at room temperature after steam explosion treatment improved the kappa number from 140~116 to 90~64. Oxygen-alkali pulping of chemical steam explosion treated woods affected to pulp yields. ${Na_2}{O_3}$-NaOH impregnation was very effective to higher carbohydrate yields at same delignification level. Its carbohydrate yield seemed to be highly related to the effluent pH. Oxygen-alkali pulping after steam explosion treatment of ${Na_2}{O_3}$-NaOH impregnated wood was shown that carbohydrate yield was very high because its effluent pH was increase from natural to mild alkali. Even if oxygen bleaching limit the delignification to 50% in order to avoid unacceptable yield and viscosity losses, oxygen-alkali pulping after steam explosion by ${Na_2}{O_3}$-NaOH impregnation was possible to extend the delignification more than 80%. Considering high pulp yield with lower lignin content from steam explosion treated wood, it might be profitable to end the cook at a high kappa number instead of a low kappa number, and continuously apply the oxygen delignification, in order to better quality pulp.

  • PDF

A Theoretical Study for Estimation of Oxygen Effect in Radiation Therapy (방사선 조사시 산소가 세포에 미치는 영향의 이론적 분석)

  • Rena J. Lee;HyunSuk Suh
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2000
  • Purpose: For estimation of yields of l)NA damages induced by radiation and enhanced by oxygen, a mathematical model was used and tested. Materials and Methods: Reactions of the products of water radiolysis were modeled as an ordinary time dependant equations. These reactions include formation of radicals, DNA damage, damage repair, restitution, and damage fixation by oxygen and H-radical. Several rate constants were obtained from literature while others were calculated by fitting an experimental data. Sensitivity studies were performed changing the chemical rate constant at a constant oxygen number density and varying the oxygen concentration. The effects of oxygen concentration as well as the damage fixation mechanism by oxygen were investigated. Oxygen enhancement ratio(OER) was calculated to compare the simulated data with experimental data. Results: Sensitivity studies with oxygen showed that DNA survival was a function of both oxygen concentration and the magnitude of chemical rate constants. There were no change in survival fraction as a function of dose while the oxygen concentration change from 0 to 1.0 x 10$^{7}$ . When the oxygen concentration change from 1.0 $\times$ 107 to 1.0 $\times$ 101o, there was significant decrease in cell survival. The OER values obtained from the simulation study were 2.32 at 10% cell survival level and 1.9 at 45% cell survival level. Conclusion: Sensitivity studies with oxygen demonstrated that the experimental data were reproduced with the effects being enhanced for the cases where the oxygen rate constants are largest and the oxygen concentration is increased. OER values obtained from the simulation study showed good agreement for a low level of cell survival. This indicated that the use of the semi-empirical model could predict the effect of oxygen in cell killing.

  • PDF

Spatiotemporal Variations of Marine Environmental Characteristics in the Middle East Coast of Korea in 2013-2014 (2013-2014년 한국 동해중부연안 해양환경특성의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Kim, Seong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.274-285
    • /
    • 2016
  • In order to elucidate the spatiotemporal variations of marine environmental parameters, we collected seawater samples in the middle east coast of Korea in 2013-2014. A high temperature and low salinity were distinctively observed in the summer and a low temperature and high salinity pattern in the winter. The temperature of the bottom water was in the range of $2^{\circ}C$ to $7^{\circ}C$, with the temperature being relatively high in the winter, while the salinity was measured to be around 34, with no large differences across the seasons. The dissolved oxygen concentrations were in the range of $7mg\;L^{-1}$ to $12mg\;L^{-1}$, and it was relatively high in May compared to other seasons. The seawater temperature and dissolved oxygen concentration at the surface layer showed a significant negative correlation in the autumn and winter seasons, based on which it is seemed that water temperature is the main factor controlling the amount of dissolved oxygen in the autumn and winter seasons. The dissolved inorganic nitrogen (DIN) and silicate (DSi) increased 11- and 7-fold, respectively, in the winter compared to the summer. The DIN to DIP (dissolved inorganic phosphorus) ratio for the surface seawater was approximately 16, but it was relatively low in the spring season. On the other hand, the DIN to DIP ratio was relatively high in the summer. Based on this, it is seemed that nitrogen and phosphorus were the growth-limiting nutrients for phytoplankton in the spring and summer, respectively. Water quality was I (excellent) ~III (medium) level at the most stations except for some stations (level IV) during the autumn season, having low dissolved oxygen saturations.

Nitrogen Transport In Groundwater-Surface Water Hyporheic Zone at Brackish Lake (기수호의 지하수-지표수 혼합대 내 질소 거동 분석)

  • Seul Gi Lee;Jin Chul Joo;Hee Sun Moon;Su Ryeon Kim;Dong Jun Kim
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.2
    • /
    • pp.23-34
    • /
    • 2024
  • Sediment, aquifer materials, surface water, and groundwater from brackish Songji lake affected by salinity of seawater, were collected and a pilot scale column experiment was conducted to simulate the nitrogen transport through the hyporheic zone. Upstream experiments of groundwater displayed that groundwater containing a small amount of salt percolated into aquifers and sediments, maintaining low dissolved oxygen concentrations. In addition, partial denitrification occurred in the aquifer due to salinity and low dissolved oxygen, resulting in the accumulation of NO2-. In sediments,nitrogenous compounds were reduced due to adsorption by long residence times or microbial-mediated oxidation/reduction reactions. Downstream experiments of surface water displayed that surface water from the brackish lake, containing high concentrations of dissolved oxygen and salts, infiltrated into the sediments and aquifer, supplying high dissolved oxygen concentrations. This resulted in biological nitrification in the sediments and aquifer, which reduced nitrogen-based pollutants despite the high salt concentration in the surface water. Whereas partial denitrification at low dissolved oxygen concentrations in the upwelling mixing zone was observed by salinity and accumulated NO2-, nitrification at high dissolved oxygen concentrations in the downwelling mixing zone was not significantly affected by salinity. These results confirm that salinity in the brackish water lake has some influence on the nitrogen behavior of the hyporheic mixing zone, although nitrogen behavior is a complex combination of factors such as DO, pH, substrate concentration, and organic matter concentration.

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung;Kim, Min Young;Kim, Dahye;Lim, Jinsub;Kim, Tae Won;Jeong, Chaehwan;Kim, Yoong-Ahm;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

Performance of sequencing batch reactor under aeration-limited condition and characteristics of microbial community change (폭기 에너지 저감 연속회분식반응조 운전과 미생물 군집 변화 특성)

  • Hwang, Kuksun;Shin, Donghyeok;Jeong, Ingyo;Park, Sungje;Chang, Insoo;Kim, Jeongbae;Choi, Jeongdong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.215-224
    • /
    • 2019
  • Recent focus on wastewater treatment includes energy-saving and renewable energy generation for energy-independence of water infrastructures. Aeration and pumping in biological wastewater removal processes account for nearly 30-60% of the total electricity cost in real wastewater treatment plants. In this study, the performance and microbial characteristics were investigated in sequencing batch reactor under typical oxygen and oxygen limited condition. Under typical DO ($7.55{\pm}0.99mg/L$) and low DO ($0.23{\pm}0.08mg/L$) conditions, COD removal was stable over 91 % during SBR operation. Ammonia removal efficiency was reduced from 95.6 % to 89.2 % when DO concentration was dropped sharply. Phosphorus removal efficiency also reached 77% at oxygen-limited condition. The results indicated that removal efficiency both ammonia and phosphorus was influenced by DO condition. Microbial analysis revealed that Proteobacteria and Bacteroidetes at phylum level was dominant in typical DO and low DO conditions and DO concentration did not much affect phylum distribution. Population decrease of genera of nitrifying bacteria(Dokdonella) and Dechloromonas spp. affect removal efficiency of nitrogen and phosphorus at low DO condition.

A Study on the Optimal Process Design of Cryogenic Air Separation Unit for Oxy-Fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 최적공정 설계 연구)

  • Choi, Hyeung-Chul;Moon, Hung-Man;Cho, Jung-ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.647-654
    • /
    • 2018
  • In order to solve the global warming and reduce greenhouse gas emissions, it has been developed the $CO_2$ capture technology by oxy-fuel combustion. But there is a problem that the economic efficiency is low because the oxygen production cost is high. ASU (Air Separation Unit) is known to be most suitable method for producing large capacity of oxygen (>2,000 tpd). But most of them are optimized for high purity (>99.5%) oxygen production. If the ASU process is optimized for low purity(90~97%) oxygen producing, it is possible to reduce the production cost of oxygen by improving the process efficiency. In this study, the process analysis and comparative evaluation was conducted for developing large capacity ASU for oxy-fuel combustion. The process efficiency was evaluated by calculating the recovery rate and power consumption according to the oxygen purity using the AspenHysys. As a result, it confirmed that the optimal purity of oxygen for oxyfuel combustion is 95%, and the power consumption can be reduced by process optimization to 12~18%.

Effect of Yellow Clay on the Oxygen Consumption Rate of Korean rockfish, Sebastes schlegelii

  • Lee, Chang-Kyu;Kim, Wan-Soo;Park, Young-Tae;Jo, Q-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2013
  • Yellow clay dispersion has been applied to minimize fisheries impact by the red tide Cochlodinium polykrikoides blooms in Korean coasts since 1995. The present preliminary study documents the effect of yellow clay on Korean rockfish, Sebastes schlegelii, in terms of oxygen consumption rate (OCR). The OCR in the low clay suspension (0.05 and 0.23 %, w/w) showed normal level compared to the control. In contrast, the OCR for each one of three replicates in the high clay suspension (1.16 and 5.58 %, w/w) was not returned to the previous level that clay was not treated, indicating that high clay suspension (${\geq}1.16%$, w/w) might give negative effect on Korean rockfish. Overall, this result suggests that field application of clay to control Harmful Algal Blooms (HABs) may not give impact on Korean rockfish once the clay is dispersed in a low concentration (${\leq}0.23%$). In order to understand the changes of OCR in the repeated exposure to clay, it is required to do further studies on the changes of OCR when the fish is exposed to clay repeatedly after recovery in the normal seawater.

Coverage Dependent Adsorption and Electronic Structure of Threonine on Ge (100) Surface

  • Lee, Myeong-Jin;Kim, Gi-Jeong;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.212-212
    • /
    • 2012
  • The Coverage dependent attachment of multifunctional groups included in threonine molecules adsorbed to Ge (100)$-2{\times}1$ surface was investigated using core-level photoemission spectroscopy (CLPES) and density functional theory (DFT) calculations. The core-level spectra at a low coverage indicated that the both carboxyl and amine groups participated in the bonding with the Ge (100) surface by "O-H dissociated and N-dative bonded structure". However, at high coverage level, additional adsorption geometry of "O-H dissociation bonded structure" appeared possibly to minimize the steric hindrance between adsorbed molecules. Moreover, the C 1s, N 1s, and O 1s core level spectra confirmed that the carboxyl oxygen is more competitive against the hydroxymethyl oxygen in the adsorption reaction. The adsorption energies calculated using DFT methods suggested that four of six adsorption structures were plausible. These structures were the "O-H dissociated-N dative bonded structure", the "O-H dissociation bonded structure", the "Om-H dissociated-N dative bonded structure", and the "Om-H dissociation bonded structure" (where Om indicates the hydroxymethyl oxygen). These structures are equally likely, according to the adsorption energies alone. Conclusively, we investigate in threonine on Ge (100) surface system that the "O-H dissociated-N dative bonded structure" and the "O-H dissociation bonded structure" are preferred at low coverage and high coverage.

  • PDF

Hydrogen Plasma와 Oxygen Plasma를 이용한 50 nm 텅스텐 패턴의 Oxidation 및 Reduction에 관한 연구

  • Kim, Jong-Gyu;Jo, Seong-Il;Nam, Seok-U;Min, Gyeong-Seok;Kim, Chan-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.288-288
    • /
    • 2012
  • The oxidation characteristics of tungsten line pattern during the carbon-based mask layer removal process using oxygen plasmas and the reduction characteristics of the WOx layer formed on the tungsten line surface using hydrogen plasmas have been investigated for sub-50 nm patterning processes. The surface oxidation of tungsten line during the mask layer removal process could be minimized by using a low temperature ($300^{\circ}K$) plasma processing instead of a high temperature plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WOx on the tungsten line could be decreased to 25% of WOx formed by the high temperature processing. The WOx layer could be also completely removed at the low temperature of $300^{\circ}K$ using a hydrogen plasma by supplying bias power to the tungsten substrate to provide an activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40 nm-CD device processing, the complete removal of WOx formed on the sidewall of tungsten line could be observed.

  • PDF