• 제목/요약/키워드: low-latency processing

검색결과 105건 처리시간 0.035초

인피니밴드 네트웍에서 RDMA 기반의 저장장치 서비스 프로토콜개발 (Implementation of Storage Service Protocol on Infiniband based Network)

  • 전기만;박창원;김영환
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2006년도 하계학술대회
    • /
    • pp.77-81
    • /
    • 2006
  • Because of the rapid increasing of network user, there are some problems to tolerate the network overhead. Recently, the research and technology of the user-level for high performance and low latency than TCP/IP which relied upon the kernel for processing the messages. For example, there is an Infiniband technology. The Infiniband Trade Association (IBTA) has been proposed as an industry standard for both communication between processing node and I/O devices and for inter-processor communication. It replaces the traditional bus-based interconnect with a switch-based network for connecting processing node and I/O devices. Also Infiniband uses RDMA (Remote DMA) for low latency of CPU and OS to communicate between Remote nodes. In this paper, we develop the SRP (SCSI RDMA Protocol) which is Storage Access Protocol on Infiniband network. And will compare to FC (Fibre Channle) based I-SCSI (Internet SCSI) that it is used to access storage on Etherent Fabric.

  • PDF

단일 비트 이하 오류 정정을 위한 극 부호용 선 처리 복호기법 (Low-Latency Polar Decoding for Error-Free and Single-Error Cases)

  • 최소연;유호영
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1168-1174
    • /
    • 2018
  • NAND 플래시 메모리를 포함하는 저장 매체의 경우 초기 상태에서 메모리 셀의 상태가 매우 우수하기 때문에, 오류가 없거나 단일 오류가 발생하는 경우가 지배적이다. 무-오류와 단일-오류에 대한 처리는 저장 매체의 시스템에 있어서 전체 시스템 성능에 영향을 미치는 중요한 요소가 된다. 전통적인 polar code 복호기법은 무-오류 또는 단일-오류에 대한 독립적인 검출이 불가능하기 때문에 일반적인 복호화 기법을 따르며 다른 오류 발생 경우와 동일한 수준의 지연 시간을 가진다. 본 논문에서는 저장 매체에서 빈번하게 발생하는 무-오류 또는 단일-오류에 대한 검출 및 정정을 일반적인 복호화 과정에 앞서 처리해줌으로써, 전체 복호화 과정에 필요한 평균적인 지연시간을 감소시키는 기법을 제안한다. 실험 결과에 따르면 무-오류 또는 단일-오류에 대한 제안하는 선 처리 (pre-processing) 기법을 적용할 경우 (1024, 512) 극 부호에 대하여 일반적인 복호화기법 대비 평균 지연시간을 약 64% 줄일 수 있다.

인터프레임 스페이스 통신을 활용한 저지연 트래픽 전송 기법 (Low Latency Traffic Transmission Technique Utilizing Interframe Space Communication)

  • 이선진;이일구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.133-136
    • /
    • 2024
  • 전 산업에서 초고속 저지연 데이터 서비스 수요가 증가하면서 저지연 트래픽 (low latency traffic, LLT) 처리 중요성이 커지고 있다. 기존 연구들은 LLT 에 우선순위를 부여하여 먼저 처리하는 프리 엠프션 기법을 제안했으나 제어 오버헤드가 증가하거나 non-LLT 트래픽 성능을 열화하는 문제를 해결할 수 없었다. 본 논문에서는 이러한 문제를 해결하기 위해 종래에 사용하지 않았던 짧은 인터프레임 스페이스 (Short Interframe Space, SIFS)를 LLT 에 활용하는 새로운 전송 기법을 제안한다. 본 논문에서는 수치 분석을 통해 제안하는 인터프레임 스페이스 통신 (Interframe Space Communication, ISC)이 종래의 전송 방법 대비 스루풋을 평균 50% 개선하고 지연도를 98% 개선할 수 있음을 보였다.

Providing Efficient Secured Mobile IPv6 by SAG and Robust Header Compression

  • Wu, Tin-Yu;Chao, Han-Chieh;Lo, Chi-Hsiang
    • Journal of Information Processing Systems
    • /
    • 제5권3호
    • /
    • pp.117-130
    • /
    • 2009
  • By providing ubiquitous Internet connectivity, wireless networks offer more convenient ways for users to surf the Internet. However, wireless networks encounter more technological challenges than wired networks, such as bandwidth, security problems, and handoff latency. Thus, this paper proposes new technologies to solve these problems. First, a Security Access Gateway (SAG) is proposed to solve the security issue. Originally, mobile terminals were unable to process high security calculations because of their low calculating power. SAG not only offers high calculating power to encrypt the encryption demand of SAG's domain, but also helps mobile terminals to establish a multiple safety tunnel to maintain a secure domain. Second, Robust Header Compression (RoHC) technology is adopted to increase the utilization of bandwidth. Instead of Access Point (AP), Access Gateway (AG) is used to deal with the packet header compression and de-compression from the wireless end. AG's high calculating power is able to reduce the load on AP. In the original architecture, AP has to deal with a large number of demands by header compression/de-compression from mobile terminals. Eventually, wireless networks must offer users "Mobility" and "Roaming". For wireless networks to achieve "Mobility" and "Roaming," we can use Mobile IPv6 (MIPv6) technology. Nevertheless, such technology might cause latency. Furthermore, how the security tunnel and header compression established before the handoff can be used by mobile terminals handoff will be another great challenge. Thus, this paper proposes to solve the problem by using Early Binding Updates (EBU) and Security Access Gateway (SAG) to offer a complete mechanism with low latency, low handoff mechanism calculation, and high security.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

최적 레이턴시 기반 공정 큐잉 알고리즘의 대역폭 이용도 (Bandwidth Utilization in Latency-Optimized Fair Queuing Algorithm)

  • 김태준
    • 정보처리학회논문지C
    • /
    • 제14C권2호
    • /
    • pp.155-162
    • /
    • 2007
  • 널리 이용되고 있는 공정 큐잉 방식인 WFQ(Weighted Fair Queoing)는 특히 인터넷 전화와 같이 저속이지만 엄격한 지연한계를 요구하는 서비스에 대해 대역폭 이용도가 저하되는 고질적인 문제점을 갖고 있었다. 이러한 WFQ의 문제점은 흐름의 레이턴시가 최적화 되지 않았기 때문으로 최근에 밝혀졌고, 이어서 최적 레이턴시 기반 공정 큐잉 방식인 LOFQ(Latency-Optimized Fair Queuing)가 도입되었다. 그리고 LOFQ에 점유자원 최적화 기능을 추가하여 대역폭 이용도를 개선하고, 반복적으로 수행되던 자원변환 알고리즘을 개선하여 수행 복잡성을 줄이는 등 LOFQ의 성능특성이 향상되었다. 하지만 여전 시뮬레이션에 의해 성능을 평가하고 있어 평가의 정확성과 소요시간 측면에서 어려움이 있다. 따라서 본 연구에서는 LOFQ의 대역폭 이용도를 수학적으로 계산하는 방법을 연구하고자 한다.

TASL: A Traffic-Adapted Sleep/Listening MAC Protocol for Wireless Sensor Network

  • Yang, Yuan;Zhen, Fu;Lee, Tae-Seok;Park, Myong-Soon
    • Journal of Information Processing Systems
    • /
    • 제2권1호
    • /
    • pp.39-43
    • /
    • 2006
  • In this paper, we proposed TASL-MAC, a medium-access control (MAC) protocol for wireless sensor networks. In wireless sensor networks, sensor nodes are usually deployed in a special environment, are assigned with long-term work, and are supported by a limited battery. As such, reducing the energy consumption becomes the primary concern with regard to wireless sensor networks. At the same time, reducing the latency in multi-hop data transmission is also very important. In the existing research, sensor nodes are expected to be switched to the sleep mode in order to reduce energy consumption. However, the existing proposals tended to assign the sensors with a fixed Sleep/Listening schedule, which causes unnecessary idle listening problems and conspicuous transmission latency due to the diversity of the traffic-load in the network. TASL-MAC is designed to dynamically adjust the duty listening time based on traffic load. This protocol enables the node with a proper data transfer rate to satisfy the application's requirements. Meanwhile, it can lead to much greater power efficiency by prolonging the nodes' sleeping time when the traffic. We evaluate our implementation of TASL-MAC in NS-2. The evaluation result indicates that our proposal could explicitly reduce packet delivery latency, and that it could also significantly prolong the lifetime of the entire network when traffic is low.

An Analysis of Replication Enhancement for a High Availability Cluster

  • Park, Sehoon;Jung, Im Y.;Eom, Heonsang;Yeom, Heon Y.
    • Journal of Information Processing Systems
    • /
    • 제9권2호
    • /
    • pp.205-216
    • /
    • 2013
  • In this paper, we analyze a technique for building a high-availability (HA) cluster system. We propose what we have termed the 'Selective Replication Manager (SRM),' which improves the throughput performance and reduces the latency of disk devices by means of a Distributed Replicated Block Device (DRBD), which is integrated in the recent Linux Kernel (version 2.6.33 or higher) and that still provides HA and failover capabilities. The proposed technique can be applied to any disk replication and database system with little customization and with a reasonably low performance overhead. We demonstrate that this approach using SRM increases the disk replication speed and reduces latency by 17% and 7%, respectively, as compared to the existing DRBD solution. This approach represents a good effort to increase HA with a minimum amount of risk and cost in terms of commodity hardware.

Recent Successive Cancellation Decoding Methods for Polar Codes

  • Choi, Soyeon;Lee, Youngjoo;Yoo, Hoyoung
    • Journal of Semiconductor Engineering
    • /
    • 제1권2호
    • /
    • pp.74-80
    • /
    • 2020
  • Due to its superior error correcting performance with affordable hardware complexity, the Polar code becomes one of the most important error correction codes (ECCs) and now intensively examined to check its applicability in various fields. However, Successive Cancellation (SC) decoding that brings the advanced Successive Cancellation List (SCL) decoding suffers from the long latency due to the nature of serial processing limiting the practical implementation. To mitigate this problem, many decoding architectures, mainly divided into pruning and parallel decoding, are presented in previous manuscripts. In this paper, we compare the recent SC decoding architectures and analyze them using a tree structure.

A CRL Distribution Scheme Minimizing the Time for CRL Processing of Vehicles on Vehicular Communications

  • Kim, Hyun-Gon
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.73-80
    • /
    • 2018
  • Certification revocation list(CRL) is needed for excluding compromised, faulty, illegitimate vehicle nodes and preventing the use of compromised cryptographic materials in vehicular communications. It should be distributed to vehicles resource-efficiently and CRL computational load of vehicles should not impact on life-critical applications with delay sensitive nature such as the pre-crash sensing that affords under 50msec latency. However, in the existing scheme, when a vehicle receives CRL, the vehicle calculates linkage values from linkage seeds, which results in heavy computational load. This paper proposes, a new CRL distribution scheme is proposed, which minimizes the time for CRL processing of vehicles. In the proposed scheme, the linkage value calculation procedure is performed by road-side unit(RSU) instead of the vehicle, and then the extracted linkage values are relayed to the vehicle transparently. The simulation results show that the proposed scheme reduces the CRL computational load dramatically, which would minimize impact on life-critical applications' operations with low latency.