• Title/Summary/Keyword: low-lactose milk

Search Result 45, Processing Time 0.026 seconds

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

Effect of Undegradable Dietary Protein Level and Plane of Nutrition on Lactation Performance in Crossbred Cattle

  • Kumar, M. Ravi;Tiwari, D.P.;Kumar, Anil
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1407-1413
    • /
    • 2005
  • An experiment was conducted in order to assess the effect of level of RDP:UDP ratio and level of feeding concentrate on milk yield, milk composition and nutrient utilization in lactating crossbred cattle. Twenty four medium producing (-10 kg/d, 45 to 135 days postpartum) lactating crossbred cows were divided into four groups of six animals each in a 2${\times}$2 factorial completely randomized design. The cows in group 1 were fed concentrate mixture I containing 59:41 RDP:UDP ratio (low UDP) at normal plane (LUDP+NP), in group 2 were fed low UDP ration at 115% of NRC (1989) requirements (LUDP+HP), whereas cows in group 3 were fed concentrate mixture II containing 52:48 RDP:UDP ratio (high UDP) at normal plane (HUDP+NP) and in group 4 were fed high UDP ration at 115% of NRC (1989) requirements (HUDP+HP). Green jowar was fed ad libitum as the sole roughage to all the animals. The experimental feeding trial lasted for 105 days. The total dry matter intake (DMI), DMI/100 kg body weight, DMI/kg $W^{0.75}$, digestibilities of DM, OM, CP, CF, EE and NFE and intakes of TDN and DCP did not differ significantly among the different groups and also due to both UDP level and plane of nutrition and also due to their interaction. The total dry matter intake varied from 145 g in group 1 (LUDP +NP) to 152.57 g/kg $W^{0.75}$ in group 2 (LUDP+HP) diet. However, increase in milk yield with increased UDP level and also with increased plane of nutrition was observed consistently throughout the experimental period. The average milk yield was 7.66, 8.15, 8.64 and 9.35 kg in groups 1, 2, 3 and 4, respectively and there was no significant difference in milk yield among different groups of cows. The overall daily average milk yields in cows fed with low and high UDP diets were 7.91 and 8.99 kg, respectively and at normal and higher plane of feeding the milk yields were 8.15 and 8.75 kg/day, respectively. Thus, there was 13.65% increase in milk yield due to high UDP level and 7.36% due to higher plane of feeding. The daily 4% FCM yields were 9.20 kg for low UDP diet and 10.28 kg for high UDP diet, whereas it was 9.11 kg at normal plane of feeding and 10.37 kg at higher plane of feeding. Fat yields for the corresponding treatment groups were 0.37, 0.43, 0.41 and 0.48 kg, respectively. The 4% FCM yield and also fat yield did not differ significantly among different dietary treatments and also due to UDP level and plane of nutrition, however, 4% FCM yield was increased by 11.74% with high UDP level and 13.83% with higher plane of feeding. The values for total solids, fat, lactose, solids-not-fat and gross energy contents in milk differed significantly (p<0.05) among the different groups and were significantly (p<0.05) higher in milk of cows fed LUDP+HP diet followed by HUDP+HP diet. Total solids (14.65 and 13.83%), lactose (5.44 and 4.92%), solids-not-fat (9.44 and 8.83%) and gross energy (887 and 838 kcal/kg) of milk decreased significantly (p<0.05) with increased UDP level while total solids (13.84 and 14.64), fat (4.84 and 5.36%) and gross energy (832 and 894 kcal/kg) increased significantly (p<0.05) with increase in plane of feeding. Gross and net energetic efficiencies and also gross and net efficiencies of nitrogen utilization for milk production were not significantly different among different groups and also were not affected significantly due to either UDP levels or plane of feeding. Results of the present study suggest that, increasing UDP level from 41% to 48% of CP in concentrate mixture and also increasing plane of feeding from normal (100%) to 115% of NRC requirements maintain a consistently higher milk production.

Effects of Different Roughage to Concentrate Ratios on the Changes of Productivity and Metabolic Profiles in Milk of Dairy Cows (조사료와 농후사료의 급여 비율이 착유유의 우유생산성과 대사산물에 미치는 영향)

  • Eom, Jun-Sik;Lee, Shin-Ja;Lee, Su-Kyoung;Lee, Yae-Jun;Kim, Hyun-Sang;Choi, You-Young;Ki, Kwang-Seok;Jeong, Ha-Yeon;Kim, Eun-Tae;Lee, Sang-Suk;Jeong, Chang-Dae;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.2
    • /
    • pp.147-160
    • /
    • 2019
  • This study was conducted to evaluate roughage to concentrate ratio on the changes of productivity and metabolic profiling in milk. Six lactating Holstein cows were divided into two groups, T1 group was fed low-concentrate diet (Italian ryegrass to concentrate ratio = 8:2) and T2 group was fed high-concentrate diet (Italian ryegrass to concentrate ratio = 2:8). Milk samples were collected and its components and metabolites were analyzed by 1H-NMR (Nuclear magnetic resonance). The result of milk components such as milk fat, milk protein, solids-not-fat, lactose and somatic cell count were not significantly different between two groups. In carbohydrate metabolites, trehalose and xylose were significantly higher (P<0.05) in T1 group, however lactose was not significantly different between two groups. In amino acid metabolites, glycine was the highest concentration however, there was no significant difference observed between two groups. Urea and methionine were significantly higher (P<0.05) in the T2 group. In lipid metabolites, carnitine, choline and O-acetylcarnitine there were no significant difference observed between the two groups. In benzoic acid metabolites, tartrate was significantly higher (P<0.05) in T2 group. In organic acid metabolites, acetate was significantly higher (P<0.05) in T1 group and fumarate was significantly higher (P<0.05) in T2 group. In the other metabolites, 3-methylxanthine was only significantly higher (P<0.05) in T2 group and riboflavin was only significantly higher (P<0.05) in T1 group. As a result, milk components were not significantly different between two groups. However, metabolites concentration in the milk was significantly different depends on roughage to concentrate ratio.

The Use of Cassava Chips as an Energy Source for Lactating Dairy Cows Fed with Rice Straw

  • Sommart, K.;Wanapat, M.;Rowlinson, P.;Parker, D.S.;CIimee, P.;Panishying, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1094-1101
    • /
    • 2000
  • Thirty-six crossbred (70% Holstein Friesian) cows in mid-lactation were assigned to one of four treatments. The dietary treatments were concentrate based, containing 13.5, 27.0, 40.5 and 54.0% of cassava in concentrate replacing ground maize (16.0% CP). There were curvilinear responses to intake of organic matter, non-structural carbohydrate and metabolisable energy. Cassava and corn fed in a ratio of 50:50 maximised organic matter, metabolisable energy intake; milk yield, milk protein and lactose yield. Milk fat yield was not affected by levels of inclusion. Dietary treatment did not influence ruminal pH, ammonia and volatile fatty acid concentrations or plasma glucose. The low market price for cassava resulted in a lower concentrate feed cost. The optimal level of cassava in a dairy cow diet is suggested as being between 20.0 and 30.0% of cassava in dry matter intake when fed with rice straw.

Effect of Rumen-protected Choline Addition on Milk Performance and Blood Metabolic Parameters in Transition Dairy Cows

  • Xu, Guozhong;Ye, Jun'An;Liu, Jianxin;Yu, Yueying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.390-395
    • /
    • 2006
  • This work was conducted to study the effect of rumen-protected choline (RPC) addition on milk performance and blood metabolic parameters in transition dairy cows. In Experiment 1, fourteen Chinese Holstein dairy cows were supplemented with 0 or 20 g/d of RPC from 7 d before expected calving to 21 d post partum. Feeding of RPC tended to increase milk yield and milk protein percentage, while milk fat and lactose percentage were not changed. Plasma concentrations of glucose tended to increase as cows consumed RPC, while plasma concentrations of triglycerides, very low density lipoproteins, cholesterol and nonesterified fatty acids were not significantly different between the two groups. In Experiment 2, thirty-six Chinese Holstein dairy cows were supplemented with 0, 30, 60 or 90 g/d RPC from 15 d before expected calving to 15 d post partum. Feeding of RPC tended to increase yield of milk and 4% fat-corrected milk for all the lactating cows, and milk composition was similar among the four groups. Plasma concentrations of glucose were remained at a higher level in 30 or 60 g/d RPC-supplemented groups, and nonesterified fatty acids were decreased in the 30 g/d group. Concentrations of triglycerides tended to reduce in 30 and 90 g/d RPC-supplemented animals, and cholesterol was reduced in 0 or 30 g/d group. These results suggest that RPC addition tended to increase milk yield and improve blood metabolic parameters during transition dairy cows, and feeding 30 g/d of RPC may be the optimal.

Effect of fermented spent instant coffee grounds on milk productivity and blood profiles of lactating dairy cows

  • Choi, Yongjun;Rim, Jongsu;Lee, Honggu;Kwon, Hyunchul;Na, Youngjun;Lee, Sangrak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1007-1014
    • /
    • 2019
  • Objective: This study was conducted to evaluate the fermentation characteristics under low mesophilic temperature of spent instant coffee ground (SICG) and to estimate the effect of fermented SICG (FSICG) as alternative feed ingredient on milk productivity of dairy cows. Methods: In the fermentation trial, fermentation of SICG was performed to investigate changes in characteristics using the microbial mixture (Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis = 1:1:1) for 21 days at $20^{\circ}C$ under anaerobic conditions. Molasses was added at 5% of dry mass. In the animal trial, eighteen Holstein Friesian cows were used to evaluate the nutritive value of the FSICG which was fermented for 14 days under the same condition as the fermentation trial. Results: In the fermentation trial, the dry matter (DM) and organic matter content linearly decreased with fermentation time (p<0.001 and p = 0.008, respectively). The acid detergent insoluble nitrogen content linearly decreased with fermentation time (p = 0.037). The microorganism counts linearly increased for Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis across fermentation time (p<0.001). In the animal trial, the DM intake of the control and FSICG treatment were not significantly different, as were milk yield, 4% fat corrected milk, fat-protein corrected milk, and feed to milk conversion content. Fat, protein, lactose, non-fat solids, milk urea nitrogen, and somatic cell counts were also not significantly different in milk composition between treatments. Conclusion: FSICG should be considered a sufficient substitute for cottonseed as a feed component, and 5% DM of a dietary FSICG level was appropriate for dairy cow diets.

Effects of prilled fat supplementation in diets with varying protein levels on production performance of early lactating Nili Ravi Buffaloes

  • Saba Anwar;Anjum Khalique;Hifzulrahman;Muhammad NaeemTahir;Burhan E Azam;Muhammad Asim Tausif;Sundas Qamar;Hina Tahir;Murtaza Ali Tipu;Muhammad Naveed ul Haque
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1387-1397
    • /
    • 2024
  • Objective: The objective of the current study was to find out the independent and interactive effects of prilled fat supplementation with protein on the production performance of early lactating Nili Ravi buffaloes. Methods: Sixteen early lactating buffaloes (36.75±5.79 d in milk; mean±standard error) received 4 treatments in 4×4 Latin-square design according to 2×2 factorial arrangements. The dietary treatments were: i) low protein low fat, ii) low protein high fat, iii) high protein low fat, and iv) high protein high fat. The dietary treatments contained 2 protein (8.7% and 11.7% crude protein) and fat levels (2.6% and 4.6% ether extract) on a dry matter basis. Results: The yields of milk and fat increased with increasing protein and fat independently (p≤0.05). Energy-, protein-, and fat-corrected milk yields also increased with increasing protein and fat independently (p≤0.05). Increasing dietary protein increased the protein yield by 3.75% and lactose yield by 3.15% and increasing dietary fat supplies increased the fat contents by 3.93% (p≤0.05). Milk yield and fat-corrected milk to dry matter intake ratios were increased at high protein and high fat levels (p≤0.05). Milk nitrogen efficiency was unaffected by dietary fat (p>0.10), whereas it decreased with increasing protein supplies (p≤0.05). Plasma urea nitrogen and cholesterol were increased by increasing protein and fat levels, respectively (p≤0.05). The values of predicted methane production reduced with increasing dietary protein and fat. Conclusion: It is concluded that prilled fat and protein supplies increased milk and fat yield along with increased ratios of milk yield and fat-corrected milk yields to dry matter intake. However, no interaction was observed between prilled fat and protein supplementation for production parameters, body weight, body condition score and blood metabolites. Predicted methane production decreased with increasing protein and fat levels.

Effects of Dietary Protein Level on Milk Composition and Postnatal Growth in Rats (흰쥐에서 식이 단백질 수준이 유즙 성분과 새끼의 영양상태에 미치는 영향)

  • 김화영
    • Journal of Nutrition and Health
    • /
    • v.32 no.8
    • /
    • pp.855-863
    • /
    • 1999
  • This study was performed to investigate the effect of dietary protein level throughout gestation and lactation on milk composition and on postnatal growth in infants, using rats as an animal model. Female Sprague-Dawley rats were provided with either high(25% ISP(Isolated Soy Protein)diet) or low protein diet(10% ISP diet) throughout gestation and lactation. Milk samples were taken for analysis from the lactating rats at days of 7, 14, 21, of lactation. Dams and some pups were killed after 4 weeks from parturtion (Experiment 1). Pups from dams of each diet groups were randomly selected and reared with 25% or 10% ISP diet for 4 more weeks (Experiment 2). In experiment 1, maternal protein intake and body weight gain throughout gestation and lactation was higher in 25% ISP group. Serum protein, Ca, Fe, Zn, K concentrations were significantly higher in 25% ISP group. There was no difference in birth weight between two groups, however the mean body weight at 4 weeks postpartum were significantly higher in 25% ISP group. Serum profiles of pups at weaning were similar to that of dams. Milk compositions were changed during lactation processes and were affected by dietary protein level. Lactose and Ca, Cu, Fe concentrations in milk were higher in 25% ISP group, whereas, lipid, triglyceride were higher in 10% ISP group. In experiment 2, food intake was higher in milk were higher in 25% ISP group but was unaffected by pup's dietary protein level after weaning. The weights of liver and kidney were affected by maternal protein intake. The weight of intestine was affected by pup's dietary protein level after weaning. The weight of femur and scapula were affected by maternal protein intake. There were no differences between four groups in serum profiles. Therefore, as mentioned above, it seemed that the effect of maternal protein malnutrition to fetus was able to be overcome to some extent by high protein diet intake after weaning. In conclusion, 1) Dietary protein level throughout gestation and lactation affected both nutritional status of dams and pups and milk composition: 25% ISP groups supported better nutritional status than 10% ISP group 2) It seemed that effect of dietary protein level after weaning on pups was able to be overcome the influence of maternal diet in fetus to some extent.

  • PDF

Lactation Performance of German Fawn Goat in Relation to Feeding Level and Dietary Protein Protection

  • Chowdhury, S.A.;Rexroth, H.;Kijora, C.;Peters, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.222-237
    • /
    • 2002
  • Effects of high and low levels of feeding with or without protected protein on the performance of lactating goats were studied. Twenty four German Fawn goats either from 1st ($43.37{\pm}3.937$ kg and 2 year old) or 3rd $62.64{\pm}6.783$ kg and 4-5 year old) parity were used for the trial. Feeding levels were 7.2 (I) and 5.2 (II) MJ ME/litre of milk of 3.5% fat in addition to that of the maintenance allowance. At each feeding level, diet had either unprotected (U) or formaldehyde protected (P) soya-meal. Thus, four diets were IU, IP, IIU and IIP, having six animals in each. The diets were composed of hay and pellet (10:4:1 of beet pulp : barley : soya-meal). Effect of feeding level, protein protection, parity, health status and kid number on intake, milk yield, milk composition, growth rate of goats were recorded across the 21 weeks of study. High feeding level resulted increase (p<0.001) in estimated metabolizable energy (ME) and metabolizable protein (MP) availability. Dietary inclusion of protected soya-meal increased (p<0.001) the estimated MP but not the ME availability. Animals in 1st parity ate more (p<0.001) DM (111 vs. 102 g/kg $W^{0.75}$/d) than those in 3rd parity. Animals with twin kids (110 g/kg $W^{0.75}$/d) had higher (p<0.001) DM intake than those with single kid (102 g/kg $W^{0.75}$/d). Fat (4%) corrected milk (FCM) yield was not effected by high (1,924 g/d) or low (1,927 g/d) feeding level but increased (p<0.001) with protected (2,166 g/d) compared with unprotected (1,703 g/d) soya-meal. FCM yield for four dietary combinations were 1,806, 2,078, 1,600 and 2,254 g/d for diets IU, IP, IIU and IIP, respectively. For unit increase (g) in estimated MP availability relative to ME (MJ) intake, FCM yield increased ($1,418{\pm}275.6$) g daily ($r^2$=0.58; p<0.001). Milk fat (3.14 vs. 3.54%; p<0.001) and protein (2.94 vs. 3.04% p<0.05) contents were lower at high than the low feeding level. Protected protein increased (p<0.001) the fat, lactose and net energy (NE) content of milk. Milk urea concentration of 175, 183, 192 and 204 mg/l for diets IU, IP, IIU and IIP, respectively indicated lower RDP content of these diets. The RDP contents were 6.97, 6.70, 7.30 and 6.83 g/MJ of ME for diets IU, IP, IIU and IIP, respectively. Live weight change over the experimental period were 41, 6, 17 and 19 g/d. Absence of any positive response of high feeding was probably due to inefficient rumen fermentation resulting from inadequate RDP supply. Protected protein improved production performance apparently by increasing MP:ME ratio in the absorbed nutrient.

Effects of Milk Consumption on Calcaneal Quantitative Ultrasound and Bone Turnover Markers of Women Living in Asan (아산시 거주 여성에서 우유섭취가 골초음파 상태와 골대사지표에 미치는 영향)

  • Kim, Hee-Seon;Kim, Min-Kyoung;Jang, Dong-Min;Kim, Nam-Soo;Kim, Jin-Ho;Lee, Byung-Kook
    • Korean Journal of Community Nutrition
    • /
    • v.12 no.4
    • /
    • pp.440-448
    • /
    • 2007
  • The objective of this study is to determine the effectiveness of 16-month milk consumption as a part of the health promotion community program for women in Asan. Subjects included 313 women belonging to the milk group (mean age = 69.1, range $47{\sim}89 y$) and 66 women to the control (mean age=43.6, range $20{\sim}69 y$) group. For those in the milk group, one cup (200 ml) of partially lactose-digested low-fat milk was provided everyday for 16 months. Each subject was interviewed to assess calcium intake by a 24-h recall after fasting blood was obtained for analyzing bone turnover markers, and calcaneus broadband ultrasound attenuation (BUA) was measured by quantitative ultrasound (QUS) on the left heel before and after the milk supplementation. After 16 months, the calcium intake levels changed from 55% of recommended dietary allowance (RDA) to 85% RDA in the milk group and from 73% RDA to 84% RDA in the control group. BUA were reduced from $67.9{\pm}8.1$ to $64.7{\pm}17.5$ dB/MHz for milk and from $90.4{\pm}13.0$ to $87.2{\pm}15.2$ dB/MHz for control groups. Paired t-test showed the changes of BUA for both groups (-3.24 and -3.15 dB/MHz for milk and control groups, respectively) were significant, but the two groups did not show any differences in absolute changes. When post-BUA was analyzed after age, initial BUA and menopausal status were controlled as covariates in ANCOVA model, the milk group showed significantly (p < 0.05) smaller changes than the control group (-3.50 vs -6.71 dB/MHz, respectively). According to a multiple regression analysis, milk consumption and initial BUA showed significant interaction meaning that those with lower initial BUA showed higher milk effects. We conclude that one-cup a day milk consumption for 16 month can prevent further bone loss and significantly improve calcium intake.