• Title/Summary/Keyword: low-flow

Search Result 6,293, Processing Time 0.031 seconds

A Study on Darrieus-type Hydroturbine toward Utilization of Extra-Low Head Natural Flow Streams

  • Tanaka, Kei;Hirowatari, Kotaro;Shimokawa, Kai;Watanabe, Satoshi;Matsushita, Daisuke;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.152-159
    • /
    • 2013
  • A two-dimensional Darrieus-type hydroturbine system, installed with a wear for flow streams such as small rivers and waterways, has been developed for hydropower utilization of extra-low head less than 2m. There are several problems such as flow rate change and flowing wastes to be solved for its practical use in natural flow streams. In the present study, at first, a design guideline in the case of overflow or bypass flow is shown by using simple flow model. Next, in order to avoid the unexpected obstacles flowing into the hydroturbine, an installation of waste screening system is examined. It is confirmed that the screen is effective with some amount of bypass flow rate, however the output power is remarkably deteriorated.

A Study on the Improvement of Fish Habitat through Various River Restoration Techniques in the Wonju-cheon Stream, Korea (다양한 하천복원 기술을 통한 원주천의 어류 서식처 향상에 대한 연구)

  • Kim, Jongjoo;Choi, Jonggeun;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.145-153
    • /
    • 2019
  • The present study performed the impact of the change of low-flow channel on aquatic habitat in a reach of the Wonju-cheon Stream, Korea. The target species was Zacco platypus, a dominant species in the middle- and upper-stream of Wonju Cheon. The River2D model was used for the computation of the flow and the habitat suitability index model was used to estimate the quantity and quality of fish habitat using habitat suitability curves. First, for the restoration to low-flow channel, the restoration was conducted in a form close-to-nature flow channel, and the width of the low-flow channel was expanded and reduced. The results indicated that the Weighted Usable Area (WUA) of the target species improved by about 72% when the width of the low-flow channel was expanded, and that the fish habitat decreased by about 25% when the width of the low-flow channel was reduced.

Study of Mechanism of Counter-rotating Turbine Increasing Two-Stage Turbine System Efficiency

  • Liu, Yanbin;Zhuge, Weilin;Zheng, Xinqian;Zhang, Yangjun;Zhang, Shuyong;Zhang, Junyue
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.160-169
    • /
    • 2013
  • Two-stage turbocharging is an important way to raise engine power density, to realize energy saving and emission reducing. At present, turbine matching of two-stage turbocharger is based on MAP of turbine. The matching method does not take the effect of turbines' interaction into consideration, assuming that flow at high pressure turbine outlet and low pressure turbine inlet is uniform. Actually, there is swirl flow at outlet of high pressure turbine, and the swirl flow will influence performance of low pressure turbine which influencing performance of engine further. Three-dimension models of turbines with two-stage turbocharger were built in this paper. Based on the turbine models, mechanism of swirl flow at high pressure turbine outlet influencing low pressure turbine performance was studied and a two-stage radial counter-rotation turbine system was raised. Mechanisms of the influence of counter-rotation turbine system acting on low-pressure turbine were studied using simulation method. The research result proved that in condition of small turbine flow rate corresponding to engine low-speed working condition, counter-rotation turbine system can effectively decrease the influence of swirl flow at high pressure turbine outlet imposing on low pressure turbine and increases efficiency of the low-pressure turbine, furthermore increases the low-speed performance of the engine.

Numerical Simulation and PIV Measurement on the Internal Flow in a Centrifugal Mini Pump at Low Flow Rate Conditions

  • Yuan, Hui-Jing;Shao, Jie;Cao, Guang-Jun;Liu, Shu-Hong;Wu, Yu-Lin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.775-780
    • /
    • 2008
  • This paper reports on the internal flow of a centrifugal mini pump working at the low flow rate operating conditions. The RNG $\kappa-\varepsilon$ turbulence model was employed to simulate the three-dimensional turbulent flow in the pump. To examine and certify the simulation results, a transparent acrylic centrifugal mini pump model which is suitable for PIV measurement has been developed. The tongue region and the passages region between blades were investigated using PIV. In order to eliminate the effect of refraction on the area closed to the wall and increase the measurement accuracy, the fluorescent particles were scatted into the working fluid with the tracing particles. It is found from the calculation and PIV measurement results that there is a large area of recirculation flow near the tongue at low flow rate operating conditions. The computationally predicted water head using the $\kappa-\varepsilon$ turbulence model at low flow rate operating conditions are in very good agreement with the experimentally measured water head and the mean velocity distributions at investigation area obtained by PIV and calculation showed a satisfactory agreement as well. Meanwhile, the results of PIV measurements show that the flow status in one passage is different to another. And for capturing the internal flow detail information, the $\kappa-\varepsilon$ turbulence model is not very suitable.

  • PDF

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

Internal Flow Measurement of Very Low Specific Speed Semi-Open Impeller by PIV (PIV를 이용한 극저비속도 세미오픈임펠러의 내부유동 계측)

  • Nishino Koichi;Lee Young-Ho;Choi Young-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.773-783
    • /
    • 2005
  • Internal flow measurement of very low specific-speed semi-open impellers has been carried out by PIV in order to understand better the internal flow patterns that are responsible fur the unique performance of these centrifugal pumps operating in the range of very low specific speed. Two types of impellers, one equipped with six radial blades (Impeller A) and the other with four conventional backward-swept blades (Impeller B), are tested in a centrifugal pump operating at a non-dimensional specific-speed of $n_s=0.24$. Complex flow patterns captured by PIV are discussed in conjunction with the overall pump performance measured separately. It is revealed that Impeller A achieves higher effective head than Impeller B even though the flow patterns in Impeller A are more complex, exhibiting secondary flows and reverse flows in the impeller passage. It is shown that both the localized strong outward flow at the pressure side of each blade outlet and the strong outward through-flow along the suction side of each blade are responsible for the better head performance of Impeller A.

Non-Parametric Low-Flow Frequency Analysis Using RCPs Scenario Data : A Case Study of the Gwangdong Storage Reservoir, Korea (RCPs 시나리오 자료를 이용한 비매개변수적 갈수빈도 해석: 광동댐 유역을 중심으로)

  • Yoon, Sun Kwon;Cho, Jae Pil;Moon, Young Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1125-1138
    • /
    • 2014
  • In this study, we applied an advanced non-parametric low-flow frequency analysis using boundary kernel by Representative Concentration Pathways (RCPs) climate change scenarios through Arc-SWAT long-term runoff model simulation at the Gwangdong storage reservoir located in Taeback, Gangwondo. The results show that drought frequency under RCPs was expected to increase due to reduced runoff during the near future, and the variation of low-flow time series was appeared greatly under RCP8.5 scenario, respectively. The result from drought frequency of Median flow in the near future (2030s) compared historic period, the case of 30-year low-flow frequency was increased (the RCP4.5 shows +22.4% and the RCP8.5 shows +40.4%), but in the distant future (2080s) expected increase of drought frequency due to the reduction of low-flow (under RCP4.5: -4.7% and RCP8.5: -52.9%), respectively. In case of Quantile 25% flow time series data also expected that the severe drought frequency will be increased in the distant future by reducing low-flow (the RCP4.5 shows -20.8% to -60.0% and the RCP8.5 shows -30.4% to -96.0%). This non-parametric low-flow frequency analysis results according to the RCPs scenarios have expected to consider to take advantage of as a basis data for water resources management and countermeasures of climate change in the mid-watershed over the Korean Peninsula.

Numerical Study on the Wind Flow Over Hilly Terrain (언덕지형을 지나는 유동의 수치해석적 연구)

  • 김현구;이정묵;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.65-77
    • /
    • 1997
  • A theoretical and numerical investigation on the boundary-layer flow over a two- or three-dimensional hill is presented. The numerical model is based on the finite volume method with boundary-fitted coordinates. The k-$\varepsilon$ turbulence model with modified wall function and the low-Reynolds-number model are employed. The hypothesis of Reynolds number independency for the atmospheric boundary-layer flow over aerodynamically rough terrain is confirmed by the numerical simulation. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the wind-tunnel experiments on the flow over a hill show good agreement. The linear theory provides generally good prediction of speed-up characteristics for the gentle-sloped hills. The flow separation occurs in the hill slope of 0.5 and the measured reattachment points are compared with the numerical prediction. It is found that the k- $\varepsilon$ turbulence model is reasonably accurate in predicting the attached flow, while the low- Reynolds-number model is more suitable to simulate the separated flows.ows.

  • PDF

Experimental Study on Adjustment of Inlet Nozzle Section to Flow Rate Variation for Darrieus-type Hydro-Turbine

  • Watanabe, Satoshi;Shimokawa, Kai;Furukawa, Akinori;Okuma, Kusuo;Matsushita, Daisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2012
  • A two dimensional Darrieus-type turbine has been proposed for the hydropower utilization of extra-low head less than 2m. In a practical use of Darrieus-type hydro-turbine, head and flow rate may be varied temporally and seasonally. Considering that the cost advantage is required for the low head hydro turbine system, the Darrieus turbine should be operated with high efficiency in the wider range of flow rate possibly by using an additional device with simpler mechanism. In the present paper, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed to obtain the preferable inlet velocity in low flow rate conditions. Effects of resulting spanwise partial inlet flow are investigated. Finally, an effective modification of inlet nozzle height over flow rate variation is shown.

Air Flow Sensor with Corrugation Structure for Low Air Velocity Detection (주름구조를 적용한 저속 유속 센서)

  • Choi, Dae-Keun;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.393-399
    • /
    • 2011
  • In this paper, we designed and fabricated the novel air flow sensor using air drag force, which can be applied to the low air flow detection. To measure the low air flow, we should enlarge the air drag force and the output signal at the given air flow. The paddle structure is applied to the device, and the device is vertically located against the air flow to magnify the air drag force. We also adapt the corrugation structure to improve the output signals on the given air velocity. The device structure is made up of the silicon nitride layer and the output signal is measured with the piezoresistive layer. The output signals from the corrugated device show the better measurement sensitivity and the response time than that of flat one. The repeated measurement also shows the stabilized signals.