• Title/Summary/Keyword: low-density parity check (LDPC) code

Search Result 121, Processing Time 0.022 seconds

Design of Low-Density Parity-Check Codes for Multiple-Input Multiple-Output Systems (Multiple-Input Multiple-output system을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Chae, Hyun-Do;Han, In-Duk;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.587-593
    • /
    • 2010
  • In this paper we design an irregular low-density parity-check (LDPC) code for multiple-input multiple-output (MIMO) system, using a simple extrinsic information transfer (EXIT) chart method. The MIMO systems considered are optimal maximum a posteriori probability (MAP) detector. The MIMO detector and the LDPC decoder exchange soft information and form a turbo iterative receiver. The EXIT charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the MIMO detector. It is shown that the performance of the designed LDPC code is better than that of conventional LDPC code which was optimized for either the Additive White Gaussian Noise (AWGN) channel or the MIMO channel.

A Good Puncturing Scheme for Rate Compatible Low-Density Parity-Check Codes

  • Choi, Sung-Hoon;Yoon, Sung-Roh;Sung, Won-Jin;Kwon, Hong-Kyu;Heo, Jun
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.455-463
    • /
    • 2009
  • We consider the challenges of finding good puncturing patterns for rate-compatible low-density parity-check code (LDPC) codes over additive white Gaussian noise (AWGN) channels. Puncturing is a scheme to obtain a series of higher rate codes from a lower rate mother code. It is widely used in channel coding but it causes performance is lost compared to non-punctured LDPC codes at the same rate. Previous work, considered the role of survived check nodes in puncturing patterns. Limitations, such as single survived check node assumption and simulation-based verification, were examined. This paper analyzes the performance according to the role of multiple survived check nodes and multiple dead check nodes. Based on these analyses, we propose new algorithm to find a good puncturing pattern for LDPC codes over AWGN channels.

LDPC Code Design and Performance Analysis for Distributed Video Coding System (분산 동영상 부호화 시스템을 위한 LDPC 부호 설계 및 성능 평가)

  • Noh, Hyeun-Woo;Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.34-42
    • /
    • 2012
  • Low density parity check (LDPC) code is widely used, since it shows superior performance close to Shannon limit and its decoding complexity is lower than turbo code. Recently, it is used as a channel code to decode Wyner-Ziv frames in distributed video coding (DVC) system. In this paper, we propose an efficient method to design the parity check matrix H of LDPC codes. In order to apply LDPC code to DVC system, the LDPC code should have rate compatibility. Thus, we also propose a method to merge check nodes of LDPC code to attain the rate compatibility. LDPC code is designed using ACE algorithm and check nodes are merged for a given code rate to maximize the error correction capability. The performance of the designed LDPC code is analyzed extensively by computer simulations.

Construction of Multiple-Rate Quasi-Cyclic LDPC Codes via the Hyperplane Decomposing

  • Jiang, Xueqin;Yan, Yier;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • This paper presents an approach to the construction of multiple-rate quasi-cyclic low-density parity-check (LDPC) codes. Parity-check matrices of the proposed codes consist of $q{\times}q$ square submatrices. The block rows and block columns of the parity-check matrix correspond to the hyperplanes (${\mu}$-fiats) and points in Euclidean geometries, respectively. By decomposing the ${\mu}$-fiats, we obtain LDPC codes of different code rates and a constant code length. The code performance is investigated in term of the bit error rate and compared with those of LDPC codes given in IEEE standards. Simulation results show that our codes perform very well and have low error floors over the additive white Gaussian noise channel.

Design of Low-Density Parity-Check Codes for Multi-Input Multi-Output Systems (Multi-Input Multi-Output System을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Heo, Jun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.161-162
    • /
    • 2008
  • In this paper we design an irregular low-density parity-check (LDPC) code for a multi-input multi-output (MIMO) system. The considered MIMO system is minimum mean square error soft-interference cancellation (MMSE-SIC) detector. The MMSE-SIC detector and the LDPC decoder exchange soft information and consist a turbo iterative detection and decoding receiver. Extrinsic information transfer (EXIT) charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the input-output transfer chart of the MMSE-SIC detector. It is shown that the performance of the designed LDPC code is much better than that of conventional LDPC code optimized for the AWGN channel.

  • PDF

Rate-Compatible LDPC Codes Based on the PEG Algorithm for Relay Communication Systems

  • Zhou, Yangzhao;Jiang, Xueqin;Lee, Moon Ho
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.346-350
    • /
    • 2015
  • It is known that the progressive edge-growth (PEG) algorithm can be used to construct low-density parity-check (LDPC) codes at finite code lengths with large girths through the establishment of edges between variable and check nodes in an edge-by-edge manner. In [1], the authors derived a class of LDPC codes for relay communication systems by extending the full-diversity root-LDPC code. However, the submatrices of the parity-check matrix H corresponding to this code were constructed separately; thus, the girth of H was not optimized. To solve this problem, this paper proposes a modified PEG algorithm for use in the design of large girth and full-diversity LDPC codes. Simulation results indicated that the LDPC codes constructed using the modified PEG algorithm exhibited a more favorable frame error rate performance than did codes proposed in [1] over block-fading channels.

Novel construction of quasi-cyclic low-density parity-check codes with variable code rates for cloud data storage systems

  • Vairaperumal Bhuvaneshwari;Chandrapragasam Tharini
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.404-417
    • /
    • 2023
  • This paper proposed a novel method for constructing quasi-cyclic low-density parity-check (QC-LDPC) codes of medium to high code rates that can be applied in cloud data storage systems, requiring better error correction capabilities. The novelty of this method lies in the construction of sparse base matrices, using a girth greater than 4 that can then be expanded with a lift factor to produce high code rate QC-LDPC codes. Investigations revealed that the proposed large-sized QC-LDPC codes with high code rates displayed low encoding complexities and provided a low bit error rate (BER) of 10-10 at 3.5 dB Eb/N0 than conventional LDPC codes, which showed a BER of 10-7 at 3 dB Eb/N0. Subsequently, implementation of the proposed QC-LDPC code in a softwaredefined radio, using the NI USRP 2920 hardware platform, was conducted. As a result, a BER of 10-6 at 4.2 dB Eb/N0 was achieved. Then, the performance of the proposed codes based on their encoding-decoding speeds and storage overhead was investigated when applied to a cloud data storage (GCP). Our results revealed that the proposed codes required much less time for encoding and decoding (of data files having a 10 MB size) and produced less storage overhead than the conventional LDPC and Reed-Solomon codes.

Construction of Block-LDPC Codes based on Quadratic Permutation Polynomials

  • Guan, Wu;Liang, Liping
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.157-161
    • /
    • 2015
  • A new block low-density parity-check (Block-LDPC) code based on quadratic permutation polynomials (QPPs) is proposed. The parity-check matrix of the Block-LDPC code is composed of a group of permutation submatrices that correspond to QPPs. The scheme provides a large range of implementable LDPC codes. Indeed, the most popular quasi-cyclic LDPC (QC-LDPC) codes are just a subset of this scheme. Simulation results indicate that the proposed scheme can offer similar error performance and implementation complexity as the popular QC-LDPC codes.

Further Results on Performance of LDPC coded IM-OFDM-QOS System

  • Kim, Hyeongseok;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.24 no.7
    • /
    • pp.1221-1227
    • /
    • 2019
  • This paper describes a low-density parity-check (LDPC) coded index modulated orthogonal frequency division multiplexing with quasi-orthogonal sequence (IM-OFDM-QOS) and provides performance evaluations of the proposed system. By using QOS as the spreading code, IM-OFDM-QOS scheme can improve the reception performance than IM-OFDM-SS scheme for a given data rate. On the other hand, LDPC code is widely used to the latest wireless communication systems as forward error correction (FEC) scheme and has Shannon-limit approaching performance. Therefore, by applying LDPC code to IM-OFDM-QOS system as FEC scheme, the reception performance can be further improved. Simulation results show that significant signal-to-noise ratio (SNR) gains can be obtained for LDPC coded IM-OFDM-QOS system compared to the LDPC coded IM-OFDM-SS system and the SNR gain increases with the higher code rate.

Low Density Parity Check Codes for Hybrid ARQ System

  • Kim, Woo-Tae;Kim, Jeong-Goo;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.370-378
    • /
    • 2007
  • The most appropriate low density parity check (LDPC) code for hybrid automatic repeat request (HARQ) system suitable for future multimedia communication systems is presented in this paper. HARQ system with punctured LDPC code is investigated at first. And two transmission schemes with parallel concatenated LDPC code are also presented and their performances are analyzed according to the various values of mean column weight (MCW). As a result, the parallel concatenated LDPC code with the diversity effect of information bit is considered to be more appropriate for HARQ system considering the throughput as well as error performance.