Low Density Parity Check Codes for Hybrid ARQ System


Abstract

The most appropriate low density parity check (LDPC) code for hybrid automatic repeat request (HARQ) system suitable for future multimedia communication systems is presented in this paper. HARQ system with punctured LDPC code is investigated at first. And two transmission schemes with parallel concatenated LDPC code are also presented and their performances are analyzed according to the various values of mean column weight (MCW). As a result, the parallel concatenated LDPC code with the diversity effect of information bit is considered to be more appropriate for HARQ system considering the throughput as well as error performance.

Keywords

References

  1. S. Lin and D. J. Costello, Jr., Error Control Coding :Fundamentals and Applications, Englewood Cliffs, NJ: Prentice Hall, 1983
  2. F. Babich, E. Valentinuzzi, and F. Vatta, 'Performance of hybrid ARQ schemes for the LEO satellite channel,' Proc. IEEE GLOBECOM 2001, San Antonio, TX, vol. 4, pp. 2709-2713, Nov. 2001
  3. R. G. Gallager, 'Low-density parity-check codes,' IRE Trans. Inform. Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962 https://doi.org/10.1109/TIT.1962.1057683
  4. T. Richardson, A. Shokrollahi, and R. Urbanke, 'Design of capacity approaching irregular low-density parity check codes,' IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001 https://doi.org/10.1109/18.910578
  5. D. J. C. MacKay, 'Good error-correcting codes based on very sparse matrices,' IEEE Trans. Inform. Theory, vol. 45, no. 3, pp. 399-431, Mar. 1999 https://doi.org/10.1109/18.748992
  6. D. J. C. MacKay and R. M. Neal, 'Near Shannon limit performance of low-density parity-check codes,' IEE Electron. Lett., vol. 32, pp. 1645-1646, Aug. 1996 https://doi.org/10.1049/el:19961141
  7. M. Sipser and D. A. Spielman, 'Expander codes,' IEEE Trans. Inform. Theory, vol. 42, no. 11, pp. 1710-1722, Nov. 1996 https://doi.org/10.1109/18.556667
  8. D. N. Rowitch and L. B. Milstein, 'On the performance of hybrid FEC/ARQ system using rate compatible punctured turbo (RCPT) codes,' IEEE Trans. Commun., vol. 48, no. 6, pp. 948-959, Jun. 2000 https://doi.org/10.1109/26.848555
  9. N. Chandran and M. C. Valenti, 'Hybrid ARQ using serial concatenated convolutional codes over fading channels,' Proc. IEEE VTC 2001, Rhodes, Greece, vol. 2, pp. 1410-1414, May 2001
  10. H. Behairy and S. C. Chang, 'Parallel concatenated gallager codes,' IEEE Commun. Lett., vol. 36, no. 24, pp. 2025-2026, Sep. 2000
  11. H. Behairy and S. C. Chang, 'Parallel Concatenated Gallager Codes,' Proc. CIC 2000, Seoul, Korea, pp. 123-127, Nov. 2000
  12. H. Behairy and S. C. Chang, 'Analysis and Design of Parallel Concatenated Gallager Codes,' IEE Electron. Lett., vol. 38, no. 18, pp. 1039-1040, Aug. 2002 https://doi.org/10.1049/el:20020719
  13. W. T. Kim, S. H. Lee, S. Y. Na, and E. K. Joo, 'Effect of CRC code in HARQ scheme with turbo code,' Proc. IEEE SOFTCOM 2003, Split, Croatia, vol. 1, pp. 847-851, Oct. 2003
  14. R. M. Tanner. 'A recursive approach to low complexity codes,' IEEE Trans. Inform. Theory, vol 27, no. 5, pp. 533-547, Sep. 1981 https://doi.org/10.1109/TIT.1981.1056404