• Title/Summary/Keyword: low-density Polyethylene

Search Result 424, Processing Time 0.028 seconds

Electrical Properties of Low Density Polyethylene Film by Superstructure Change (고차구조 변화에 따른 저밀도폴리에틸렌 박막의 전기적 특성)

  • Shin, Jong-Yeol;Shin, Hyun-Taek;Lee, Soo-Won;Hong, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.101-109
    • /
    • 2002
  • The electrical properties of polyethylene are changed by the superstructure. Such crystalline polymer as polyethylene or polypropylene changes crystallinity and products spherulite or trans-crystal when it is cooled slowly. In this study, after thermal treatment of LDPE at 100[${circ}C$], in silicone oil for an hour, we made specimens in order of slow cooling, water cooling, quenching according to cooling speed. Also, to study the influence of electrical properties due to the superstructure change, we analyzed physical properties and performed dielectric breakdown experiments using DC and impulse voltage Moreover we measured space charges in bulk using Laser Induced Pressure Pulse(LIPP) method. Trap level of specimen is 0.064[eV] at the low temperature region 0.31[eV] at the high temperature region in DC dielectric strength, 0.03[eV] at the low temperature region 0.0925[eV] at the high temperature region in impulse dielectric strength. As its result shows that the quantity of charges induced from the electrode surface increases with applied voltage time, and the distribution of space charges in samples increases the quantity of charges in proportion to applied voltage.

The crystallinity and electrical characteristics of low density polyetylene thin film (저밀도 폴리에틸렌 필림의 결정화도 및 전기적 특성)

  • 윤중락;권정열;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.164-168
    • /
    • 1996
  • The relation between crystallinity and thermal history in low density polyethylene thin films and their effect on electric conduction phenomena and dielectric breakdown was studied. The low density polythylene thin films obtained by the solution growth method heat-treated at 140[$^{\circ}C$] for 2 h and subsequently cooling to various ways. The degree of crystallinity was estimated by the X-ray diffraction measurement for the specimen of slowly cooling, ICE quenching and liquid nitrogen quenching. The result shows that the crystallinity decreases become faster as the cooling speed increased, and that conduction phenomenon is governed by the space charge limited current in high field. It was found that the dielectric breakdown field increases with an increase in cooling speed and test number in self-healing breakdown method.

  • PDF

Effect of Corona Discharge Treatment on the Dyeability of Low-density Polyethylene Film

  • Park, Soo-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.35-36
    • /
    • 2003
  • The purpose of this work is to investigate the surface modification of LDPE film via corona discharge treatment and subsequent graft polymerization, and their effect on the resulting dyeability is studied in terms of the surface functional groups, surface energetics, and acid-base interaction between the modified LDPE and the dyes used.

  • PDF

Effects of Melt-viscosity of Polyethylene Mixtures on the Electrospun-fiber Diameter Using a Oil-circulating Melt-electrospinning Device (열매유형 용융전기방사장치를 이용한 폴리에틸렌 혼합물의 용융점도와 섬유직경의 상관관계 연구)

  • Yang, Hee-Sung;Kim, Hyo-Sun;Na, Jong-Sung;Seo, Young-Soo
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.518-524
    • /
    • 2014
  • Electrospinning has gained interests as a polymer processing technique for nanofiber fabrications. It is well known that both polymer solutions and polymer melts can be electrospun. Among them, melt electrospinning is environmentally friendly technique due to the absence of solvent. However, the diameter of melt-electrospun fibers is typically thicker than solution-electrospun fibers. By using a home-made melt-electrospinning device, micron-sized fibers with smooth and even surfaces were electrospun successfully. We demonstrate that low-density polyethylene fibers can be reduced in diameter with a viscosity-reducing additive such as low molecular weight polyethylene monoalcohol and polyethylene wax. The diameter was further reduced by blending it with oxidized polyethylene wax due to polarity increment. Additionally, parameters affecting the diameter were analyzed such as an applied voltage and a spinning distance.

Dyeing Characteristics and Mechanical Properties of High Tenacity Polyethylene(HTPE) Filament using Solvent Dyes (솔벤트 염료를 이용한 고강도 폴리에틸렌(HTPE) 필라멘트사의 염색성 및 기계적 물성 평가)

  • Lee, Jeong Hoon;Lee, Beom Young;Lee, Seung O;Choi, Kyeong Yong;Ko, Jae Wang;Kim, Jung Su;Kim, Taekyeong;Lee, Seung Geol
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.105-114
    • /
    • 2017
  • High tenacity polyethylene(HTPE) fiber is one of the most important synthetic fibers which possesses outstanding properties such as low density, excellent surface hardness and scratch resistance, superior electrical insulation and low cost. In this study, we dyed high tenacity polyethylene filaments using three different solvent dyes based on log P calculations. We evaluated the dyeing characteristics of dyed high tenacity polyethylene filaments based on dyeing temperature, dyeing time and concentration of solvent dyes. We also analyzed the tensile strength and elongation properties of dyed high tenacity polyethylene filaments with various dyeing temperature and dyeing times. The optimized dyeing condition can be found at $120^{\circ}C$ for dyeing time of 1 hour with 4%(o.w.f.) of solvent dyes.