• Title/Summary/Keyword: low-damage structures

Search Result 355, Processing Time 0.034 seconds

A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact

  • Aghaei, Manizheh;Forouzan, Mohammad R.;Nikforouz, Mehdi;Shahabi, Elham
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1291-1303
    • /
    • 2015
  • Damage caused by low velocity impact is so dangerous in composites because although in most cases it is not visible to the eye, it can greatly reduce the strength of the composite material. In this paper, damage development in U-section glass/polyester pultruded beams subjected to low velocity impact was considered. Different failure criteria such as Maximum stress, Maximum strain, Hou, Hashin and the combination of Maximum strain criteria for fiber failure and Hou criteria for matrix failure were programmed and implemented in ABAQUS software via a user subroutine VUMAT. A suitable degradation model was also considered for reducing material constants due to damage. Experimental tests, which performed to validate numerical results, showed that Hashin and Hou failure criteria have better accuracy in predicting force-time history than the other three criteria. However, maximum stress and Hashin failure criteria had the best prediction for damage area, in comparison with the other three criteria. Finally in order to compare numerical model with the experimental results in terms of extent of damage, bending test was performed after impact and the behavior of the beam was considered.

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

On time reversal-based signal enhancement for active lamb wave-based damage identification

  • Wang, Qiang;Yuan, Shenfang;Hong, Ming;Su, Zhongqing
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1463-1479
    • /
    • 2015
  • Lamb waves have been a promising candidate for quantitative damage identification for various engineering structures, taking advantage of their superb capabilities of traveling for long distances with fast propagation and low attenuation. However, the application of Lamb waves in damage identification so far has been hampered by the fact that the characteristic signals associated with defects are generally weaker compared with those arising from boundary reflections, mode conversions and environmental noises, making it a tough task to achieve satisfactory damage identification from the time series. With awareness of this challenge, this paper proposes a time reversal-based technique to enhance the strength of damage-scattered signals, which has been previously applied to bulk wave-based damage detection successfully. The investigation includes (i) an analysis of Lamb wave propagation in a plate, generated by PZT patches mounted on the structure; (ii) an introduction of the time reversal theory dedicated for waveform reconstruction with a narrow-band input; (iii) a process of enhancing damage-scattered signals based on time reversal focalization; and (iv) the experimental investigation of the proposed approach to enhance the damage identification on a composite plate. The results have demonstrated that signals scattered by delamination in the composite plate can be enhanced remarkably with the assistance of the proposed process, benefiting from which the damage in the plate is identified with ease and high precision.

Demand response modification factor for the investigation of inelastic response of base isolated structures

  • Cheraghi, Rashid Eddin;Izadifarda, Ramezan Ali
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.23-48
    • /
    • 2013
  • In this study, the effect of flexibility of superstructures and nonlinear characteristics of LRB (Lead Rubber Bearing) isolator on inelastic response of base isolated structures is investigated. To demonstrate the intensity of damage in superstructures, demand response modification factor without the consideration of damping reduction factor, demand RI, is used and the N2 method is applied to compute this factor. To evaluate the influence of superstructure flexibility on inelastic response of base isolated structures, different steel intermediate moment resisting frames with different heights have been investigated. In lead rubber bearing, the rubber provides flexibility and the lead is the source of damping; variations of aforementioned characteristics are also investigated on inelastic response of superstructures. It is observed that an increase in height of superstructure leads to higher value of demand RI till 4-story frame but afterward this factor remains constant; in other words, an increase in height until 4-story frame causes more damage in the superstructure but after that superstructure's damage is equal to the 4-story frame's. The results demonstrate that the low value of second stiffness (rubber stiffness in LRBs) tends to show a significant decrease in demand RI. Increase in value of characteristic strength (yield strength of the lead in LRBs) leads to decrease in the demand RI.

Seismic performance evaluation of steel moment resisting frames with mid-span rigid rocking cores

  • Ali Akbari;Ali Massumi;Mark Grigorian
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.621-635
    • /
    • 2023
  • The combination of replaceable and repairable properties in structures has introduced new approach called "Low Damage Design Structures". These structural systems are designed in such a way that through self-centering, primary members and specific connections neither suffer damage nor experience permanent deformations after being exposed to severe earthquakes. The purpose of this study is the seismic assessment of steel moment resisting frames with the aid of rigid rocking cores. To this end, three steel moment resisting frames of 4-, 8-, and 12-story buildings with and without rocking cores were developed. The nonlinear static analysis and incremental dynamic analysis were performed by considering the effects of the vertical and horizontal components of 16 strong ground motions, including far-fault and near-fault arrays. The results reveal that rocking systems benefit from better seismic performance and energy dissipation compared to moment resisting frames and thus structures experience a lower level of damage under higher intensity measures. The analyses show that the interstory drift in structures equipped with stiff rocking cores is more uniform in static and dynamic analyses. A uniform interstory drift distribution leads to a uniform distribution of the bending moment and a reduction in the structure's total weight and future maintenance costs.

Damage Analysis of Turbopump Turbine considering Creep-Fatigue effects (크리프-피로 영향을 고려한 터보펌프 터빈의 손상해석)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Kim, Jin-Han;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Structures under high temperature may have creep behavior and fatigue behavior. Durability study of the structures need the damage analysis with the creep-fatigue effects. In this paper, the damage analysis is studied for a turbine blade in the turbopump for a liquid rocket engine which is operated under high temperature condition. First of all, the load cycle is required for defining the operational characteristics of turbopump. The thermal stress analysis is done for a turbine blade of the turbopump. The stress analysis results are used to judge damage due to the creep and the fatigue. The strain-life method with miner rule is used for fatigue damage analysis. The Larson-Miller parameter master curve and robinson rule are used for the creep damage analysis. The linear damage summation method is used to consider creep-fatigue effects of turbopump turbine. Finally, the analysis results for fatigue and the influence are compared to figure out the damage phenomenon of the turbopump turbine.

Performance of structures and infrastructure facilities during an EF4 Tornado in Yancheng

  • Tao, Tianyou;Wang, Hao;Yao, Chengyuan;Zou, Zhongqin;Xu, Zidong
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.137-147
    • /
    • 2018
  • Heavy damages to properties with attendant losses were frequently caused by tornadoes in recent years. This natural hazard is one of the most destructive wind events that must be fully studied and well understood in order to keep the safety of structures and infrastructure facilities. On June 23, 2016, a severe tornado, which is an Enhanced Fujita (EF) 4 storm, occurred in the rim of a coastal city named as Yancheng in China. Numerous low-rise buildings as well as facilities (e.g., transmission towers) were destroyed or damaged. In this paper, damages to structures and infrastructure facilities by the severe tornado are reviewed. The collapses of residential buildings, industrial structures and other infrastructure facilities are described. With an overview of the damages, various possible mechanisms of the collapse are then discussed and utilized to reveal the initiation of the damage to various facilities. It is hoped that this paper can provide a concise but comprehensive reference for the researchers and engineers to help understand the tornado effects on structures and expose the vulnerabilities that need to be improved in current wind-resistant design practices.

Residual seismic performance of steel bridges under earthquake sequence

  • Tang, Zhanzhan;Xie, Xu;Wang, Tong
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.649-664
    • /
    • 2016
  • A seismic damaged bridge may be hit again by a strong aftershock or another earthquake in a short interval before the repair work has been done. However, discussions about the impact of the unrepaired damages on the residual earthquake resistance of a steel bridge are very scarce at present. In this paper, nonlinear time-history analysis of a steel arch bridge was performed using multi-scale hybrid model. Two strong historical records of main shock-aftershock sequences were taken as the input ground motions during the dynamic analysis. The strain response, local deformation and the accumulation of plasticity of the bridge with and without unrepaired seismic damage were compared. Moreover, the effect of earthquake sequence on crack initiation caused by low-cycle fatigue of the steel bridge was investigated. The results show that seismic damage has little impact on the overall structural displacement response during the aftershock. The residual local deformation, strain response and the cumulative equivalent plastic strain are affected to some extent by the unrepaired damage. Low-cycle fatigue of the steel arch bridge is not induced by the earthquake sequences. Damage indexes of low-cycle fatigue predicted based on different theories are not exactly the same.

Quantitative Damage Model of Steel Members under Severe Seismic Loading (강한 지진하중하에서 강부재의 정량적인 손상 모델)

  • Park, Yeon Soo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.339-353
    • /
    • 1998
  • In this paper, the previous damage models for structures and their components under seismic repeated loading were reviewed systematically. A failure criterion for steel members under severe cyclic excitations as in strong earthquakes was described. A new approach to seismic damage assessment for steel members was proposed. This method was based on a series of the experimental and numerical investigations for steel members under very low cyclic loading. In this study, very low cyclic loading means repetitive loading, 5 to 20 loading cycles, within the large plastic range. The proposed damage assessment method was focused on the local strain history at the cross-section of the most severe concentration of deformation.

  • PDF