• Title/Summary/Keyword: low-damage design

Search Result 318, Processing Time 0.038 seconds

Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel (유한요소기반 다중스케일 연성파손모사 기법을 이용한 원주방향 균열이 존재하는 탄소강 실배관의 파손예측 및 검증)

  • Han, Jae-Jun;Bae, Kyung-Dong;Kim, Yun-Jae;Kim, Jong-Hyun;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.727-734
    • /
    • 2014
  • This paper describes multi-scale based ductile fracture simulation using finite element (FE) damage analysis. The maximum and crack initiation loads of cracked components were predicted using proposed virtual testing method. To apply the local approach criteria for ductile fracture, stress-modified fracture strain model was adopted as the damage criteria with modified calibration technique that only requires tensile and fracture toughness test data. Element-size-dependent critical damage model is also introduced to apply the proposed ductile fracture simulation to large-scale components. The results of the simulation were compared with those of the tests on SA333 Gr. 6 full-scale pipes at $288^{\circ}C$, performed by the Battelle Memorial Institute.

Earthquake Direct Economic Loss Estimation of Building Structures in Gangnam-Gu District in Seoul Using HAZUS Framework (HAZUS틀을 사용한 서울시 강남구의 건축물 지진피해에 따른 직접적 경제손실 예측)

  • Jeong, Gi Hyun;Lee, Han Seon;Kwon, Oh-Sung;Hwang, Kyung Ran
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.391-400
    • /
    • 2016
  • For earthquake loss estimation of building structures in Gangnam-Gu district in Seoul, three scenario earthquakes were selected by comparison of the response spectra of these scenario earthquakes with the design spectrum in Korean Building Code (KBC 2009), and then direct losses of the building structures in the Gangnam-Gu district under each scenario earthquake are estimated. The following conclusions are drawn from the results of damage and loss in the second scenario earthquake, which has a magnitude = 6.5 and epicentral distance =15 km: (1) The ratio of building stocks undergoing the extensive and complete damage level is 40.0% of the total. (2) The amount of direct economic losses appears approximately 19 trillion won, which is 1.2% of the national GDP of Korea. (3) About 25% of high-rise (over 10-story) RC building wall structures, were inflicted with the damage exceeding moderate level, when compared to 60% of low-rise building structures. (4) From the economical view point, the main loss, approximately 50%, was caused by the damage in the high-rise RC wall building structures.

Durability Evaluation of High-Performance, Low-Heat Self-Compacting Concrete for Foundation of Tall Buildings (초고층 건축물 매트 기초용 고성능 콘크리트 내구성 평가)

  • Kim, Young-Bong;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • Concrete used for the foundation of high-rise buildings is often placed through in an integrated pouring to ensure construction efficiency and quality. However, if concrete is placed integrally, there is a high risk of temperature cracking during the hydration reaction, and it is necessary to determine the optimal mixing design of high-performance, high-durable concrete through the replacement of the admixture. In this study, experiments on salt damage, carbonation, and sulfate were conducted on the specimen manufactured from the optimal high-performance low-heating concrete combination determined in the author's previous study. The resistance of the cement matrix to chlorine ion diffusion coefficient, carbonation coefficient, and sulfate was quantitatively evaluated. In the terms of compression strength, it was measured as 141% compared to the structural design standard of KCI at 91 days. Excellent durability was expressed in carbonation and chlorine ion diffusivity performance evaluation. In particular, the chlorine ion diffusion coefficient, which should be considered the most strictly in the marine environment, was measured at a value of 4.09×E-12m2/y(1.2898×E-10m2/s), and is expected to be used as a material property value in salt damage durability analysis. These results confirmed that the latent hydroponics were due to mixing of the admixture and high resistance was due to the pozzolane reaction.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

A Study on AC/DC Converter Design of High Efficiency for Inverter Resistance Welder (인버터 저항용접기의 전력효율 향상을 위한 AC/DC 컨버터 설계에 관한 연구)

  • Kwak, D.K.;Jung, W.S.;Kang, W.C.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.40-41
    • /
    • 2016
  • The inverter resistance welder requires AC/DC converter of high efficiency because the converter changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of converter decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a high efficiency AC/DC converter for inverter resistance welder. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit. As a result, the proposed AC/DC converter obtains low switching power loss and high efficiency.

  • PDF

Female Workers' Uniform Preference of the Fiber Firms (섬유업체 근로여성의 작업복 실태 및 선호연구)

  • 이옥희
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.4
    • /
    • pp.185-198
    • /
    • 1997
  • This study was initiated to research on the uniform preference uniform satisfaction and wearing of female workers' uniform of the fiber firms. Data was obtained from 361 female workers of the fiber firms in Chon Buk. And it was analyzed by frequency percent mean duncan's multiple test. The results of this study were as follows; 1) Pocket sleeve and front hem were parts of the damage. The weaving workers were mostly wore upper and under garments but most of there workers were only wore an upper garment on the basic type of uniform The older and married were small in the fitness of uniform the armhole sleeve girth sleeve length and breast girth were unfitted 2) Workers was dissatisfied to the noise and the dust in working environment. Uniform satisfaction of workers were mostly low design color and fabric were the lowest factors of uniform satisfaction. The satisfaction of material were also low the lowest factors were absorptiveness elasticity breathability. Workers wanted the fashion and light colored uniform but they prefered function activity to work and manageability on wearing rather than externals among the uniform preference.

  • PDF

A Study on the Impact Damage and Residual Strength of CFRP Composite Laminates under Low Temperature (저온하에서 CFRP 적층재의 충격 손상과 잔류 강도 -저/고온하에서 CFRP 적층재의 충격 손상을 중심으로 -)

  • Yang, I.Y.;Jung, J.A.;Cha, C.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • In this paper, the effects of temperature change (low and high temperature) on the impact damages of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CF/epoxy orthotropic laminated plates, which have two-interfaces $[0^{\circ}\;_6/90^{\circ}\;_6]s$ and $[0^{\circ}\;_4/90^{\circ}\;_4]s$. And CF/PEEK orthotropic laminated plates, which have two-interfaces $[0^{\circ}\;_4/90^{\circ}\;_4]s$. And, this study aims experimentally to present the interrelations between the impact energy vs. impact damages (i.e. delamination area and matrix crack) of CFRP laminates (CF/epoxy, CF/PEEK) subjected to FOD(foreign object damage) under low and high temperatures. A steel ball launched by the air gun collides against CFRP laminates to generate impact damages.

  • PDF

A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines (저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구)

  • Lee, D.C.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF

Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns (비대칭 Groove를 이용한 FDB 회전축의 기울기 보상)

  • Lee, Nam-Hun;Han, Jae-Hyuk;Oh, Dong-Ho;Kim, Chul-Soon;Byun, Yong-Kyu;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF

Root Cause Analysis on the Steam Turbine Blade Damage of the Combined Cycle Power Plant (복합화력발전소 증기터빈 동익 손상 원인분석)

  • Kang, M.S.;Kim, K.Y.;Yun, W.N.;Lee, W.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The last stage blade of the low pressure steam turbine remarkably affects turbine plant performance and availability Turbine manufacturers are continuously developing the low pressure last stage blades using the latest technology in order to achieve higher reliability and improved efficiency. They tend to lengthen the last stage blade and apply shrouds at the blades to enhance turbine efficiency. The long blades increase the blade tip circumferential speed and water droplet erosion at shroud is anticipated. Parts of integral shrouds of the last stage 40 inch blades were cracked and liberated recently in a combined cycle power plant. In order to analyze the root cause of the last stage blades shroud cracks, we investigated operational history, heat balance diagram, damaged blades shape, fractured surface of damaged blades, microstructure examination and design data, etc. Root causes were analyzed as the improper material and design of the blade. Notches induced by erosion and blade shroud were failed eventually by high cycle fatigue. This paper describes the root cause analysis and countermeasures for the steam turbine last stage blade shroud cracks of the combined cycle power plant.

  • PDF