• 제목/요약/키워드: low-cycle fatigue

검색결과 345건 처리시간 0.028초

고온 저주기 피로에 의한 STS 304 압연강재의 특성연구 (Characteristics of STS 304 Rolled Steel by High Temperature Low Cycle Fatigue)

  • 김치환;박영민;배문기;신동철;김대원;김태규
    • 열처리공학회지
    • /
    • 제32권1호
    • /
    • pp.12-16
    • /
    • 2019
  • In this study, strain-controlled low cycle fatigue test for hot rolled STS304 steel was carried out at $400^{\circ}C$ and $600^{\circ}C$, respectively. High temperature fatigue test was done using an electric furnace attached on the hydraulic fatigue test machine. The results of this study show that STS304 hot rolled steel has excellent static strength and fatigue characteristics. The hysteresis loop at half life was obtained in order to calculate the elastic and plastic strain. Also, Relationship between strain amplitude and fatigue life was examined in order to predict the low cycle fatigue life of STS304 steel by Coffin-Manson equation.

STS 304 압연강의 저주기 피로특성에 관한 연구 (A Characteristic Study of Low Cycle Fatigue for Rolled STS 304 Steel)

  • 김치환;박영민;배문기;김혜성;김태규
    • 열처리공학회지
    • /
    • 제31권1호
    • /
    • pp.18-23
    • /
    • 2018
  • In this study, low cyclic fatigue test was carried out at room temperature condition for rolled STS304 steel. The results of this study show that rolled STS304 steel has excellent static tensile strength and fatigue characteristics. The relationship between plastic strain range and fatigue life was examined using the triangular wave in order to predict the low cycle fatigue life of rolled STS304 steel by Coffin-Manson equation. Cyclic behavior of rolled STS304 steel was characterized by cyclic hardening with increasing number of cycle through the Hysteresis loop analysis and cyclic response of maximum stress versus number of cycles. It is found that the plastic deformation energy consumed per cycle is reduced by calculating the area of the hysteresis loop.

Detection of Low Cycle Fatigue in Type 316 Stainless Steel using HTS-SQUID

  • Park, D.G.;Kim, D.W.;Timofeev, V.P.;Hong, J.H.
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.222-225
    • /
    • 2004
  • A portable RF HTS SQUID-based susceptometer was applied to the measurement of fatigue behavior for type 316L(N) stainless steel containing 0.04% to 0.15% nitrogen content. Strain-controlled low cycle fatigue (LCF) tests were conducted at RT and $600^{\circ}C$ in air an atmosphere, and the magnetic moments were measured after the fatigue test using HTS SQUID. The magnetic moment of an as-received sample is higher than that of a fatigued sample in all the temperature ranges irrespective of the nitrogen content. The fatigue life decreased with an increasing test temperature up to $500^{\circ}C$, but increased at $600^{\circ}C$. The change of the magnetic moments by LCF test is attributed to the stress induced micro defects.

자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동 (High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys)

  • 박종수;성시영;한범석;정창렬;이기안
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

SiC입자강화 주조Al-Si복합재의 피로수명에 대한 인장평균변형률의 영향 (Tensile Mean Strain Effects on the Fatigue Life of SiC-Particulate-Reinforced Al-Si Cast Alloy Composites)

  • 고승기
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1970-1981
    • /
    • 1999
  • The low-cycle fatigue behaviour of a SiC-particulate-reinforced Al-Si cast alloy with two different volume fractions has been investigated from a series of strain-control led fatigue tests with zero and nonzero tensile mean strains. The composites including the unreinforced matrix alloy, exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. For the tensile mean strain tests, the initial high tensile mean stress relaxed to zero for the ductile Al-Si alloy, resulting in no influence of the tensile mean strain on the fatigue life of the matrix alloy. However, tensile mean strain for the composite caused tensile mean stresses and reduced fatigue life. The pronounced effects of mean strain on the low-cycle fatigue life of the composite compared to the unreinforced matrix alloy were attributed to the initial large prestrain and non-relaxing high tensile mean stress in the composite with very limited ductility and Cyclic plasticity. Fatigue damage parameter using strain energy, density efficiently accounted for the mean stress effects. Predicted fatigue life using the damage parameter correlated fairly well with the experimental life within a factor of 3. Also, the fatigue damage parameter indicated the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced matrix alloy.

PWR환경을 모사한 저주기 피로실험장치 국산화 (Development of Low-Cycle Fatigue Test Rig in Simulated PWR Environments)

  • 정일석;김상재;이용성;홍승열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.178-183
    • /
    • 2004
  • For developing fatigue design curve of cast stainless steels that would be used in piping material of domestic nuclear power plants, a low-cycle fatigue test rig was built. It is capable of performing tests in pressurized high temperature water environment of PWR. Cylindrical specimens of CF8M were used for the strain-controlled environmental fatigue tests. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitude at 0.04%/s strain rates. The disparity between target length and measured length of specimens was corrected by using finite element method. The corrected test results showed similar fatigue life trend with another previous results.

  • PDF

SA 516-70 압력용기용강의 저온피로 크랙전파 특성에 관한 연구 (Fatigue Crack Propagation Characteristics in SA 516-70 Steel for Pressure Vessels at Low Temperature)

  • 박경동;차성수
    • 동력기계공학회지
    • /
    • 제3권2호
    • /
    • pp.51-56
    • /
    • 1999
  • Fatigue crack propagation rates and characteristics of the SA516-70 steel which is used for the low temperature pressure vessels, were studied in the room temperature of $10^{\circ}C$ and low temperature ranges of $-10^{\circ}C,\;-30^{\circ}C,\;-50^{\circ}C,\;and\;-70^{\circ}C$ with stress ratio of R=0.05. The obtained experimental results are as follows; 1) In the logarithmic relationship between the fatigue crack propagation rate(da/dN) and stress intensity factor K, the linear relationship was obtained up to da/dN > $8{\times}10^3$ mm/cycle in the same of room temperature, but in low temperature case, the relationship was extended to the range of low crack propagation rate. 2) The lower limit stress intensity factor of SA516-70 ${\Delta}K_{th}\;was\;23MPa\sqrt{m}$ and in the case of low temperature $-50^{\circ}C\;and\;-70^{\circ}C$, the crack propagation rate da/dN which showed a linear relation, reached rapidly to the ${\Delta}K_{th}$. As the results, the crack propagation rates of $-50^{\circ}C\;and\;-70^{\circ}C$ were lower than that of room temperature and according to the testing temperature the rates were decreased rapidly to the ${\Delta}K_{th}$. 3) On the relationship between the stress intensity factor ${\Delta}K$ and the track propagation cycle, the stress intensity factors of low cycle region was rapidly increased at low temperature, but ${\Delta}K$ was increased rapidly at room temperature of high cycle. 4) On the relationship between the fatigue crack propagation rate and cycle, the fatigue crack propagation rate showed higher gradient in the room temperature than the low temperature due to the increment in ductility at low temperature.

  • PDF

윤활환경에 따라 발생하는 소성변형량과 저주기 피로물성을 이용한 스커핑 수명 예측 (The Prediction of Scuffing Life due to Plastic Deformation and Low-cycle Fatigue Properties Under Various Lubricated Conditions)

  • 김병주;이영제
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.7-14
    • /
    • 1998
  • A correlation between the low-cycle fatigue life and the scuffing-failure life is demonstrated using the plastic strain increment in boundary lubricated sliding. Loadings proportional to hardness with three different lubricated conditions were used to evaluate the plastic strain increments. As the results of scuffing tests using vacuum pump oils in nitrogen gas, plastic strain increment shows 0.0062, and in the mineral oils and commercial engine oils in air, plastic strain increments show 0.0042 and 0.00092. Those are very useful to describe quantitatively the real lubricated sliding conditions, and are very effective to find the relation between the low-cycle fatigue life and the scuffing-failure life.

ASTM 516-60 강의 저온피로 크랙전파 특성에 관한 연구 (Fatigue Crack Propagation Characteristics in ASTM 516/60 Steel at Low Temperature)

  • 박경동;김정호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.240-245
    • /
    • 2000
  • Fatigue crack propagation rates and characteristics of the SA516-60 steel which is used for the low temperature pressure vessels, were studied in the room temperature of $25^{\circ}C$ and low temperature ranges of $10^{\circ}C,\; -10^{\circ}C,\; -30^{\circ}C,\; -50^{\circ}C, \;and\; -70^{\circ}C4 with stress ratio of R=0.05. The obtained experimental results are as follows; 1) In the logarithmic relationship between the fatigue crack propagation rate(da/dN) and stress intensity factor K, the linear relationship was obtained up to da/dN 〉$8\times10^{-3}$/mm/cycle in the same of room temperature, but in low temperature case, the relationship was extended to the range of crack propagation rate. 2) The lower limit stress intensity factor of SA516-60 $\DeltaK_{th}$ was 15.8MPa and in the case of low temperature $-50^{\circ}C\; and\; -70^{\circ}C$, the crack propagation rate da/dN which showed a linear relation, reached rapidly to the $\DeltaK_{th}$/. As the results, the crack propagation rates of $-50^{\circ}C\; and\; -70^{\circ}C$ were lower than that of room temperature and according to the testing temperature the rates were decreased rapidly to the $\DeltaK_{th}$/. 3) On the relationship between the stress intensity factor $\DeltaK$ and the crack propagation cycle, the stress intensity factors of low cycle region was rapidly increased at low temperature, but $\DeltaK$ was increased rapidly at room temperature of high cycle. 4) On the relationship between the fatigue crack propagation rate and cycle, the fatigue crack propagation rate showed higher gradient in the room temperature than the low temperature due to the increment in ductility at low temperature.

  • PDF

주조 및 압출가공된 SiC입자강화 알루미늄복합재의 피로거동 및 피로수명에 대한 비교 연구 (A Comparative Study on the Cyclic Behavior and Fatigue Life of Cast and Extruded SiC -Particulate - Reinforced Al-Si Composites)

  • 고승기;이경엽
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.777-785
    • /
    • 2000
  • The low-cycle fatigue behaviors of cast AI-Si alloy and composite with reinforcement of SIC particles were compared with those of extruded unreinforced matrix alloy and composite in order to investigate the influence of cast and extrusion processes on the cyclic deformation and fatigue life. Generally, both cast and extruded composites including the unreinforced alloy exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. However, cast composite under a low applied cyclic strain showing no observable plastic strain exhibited cyclic softening behavior due to the cast porosities. The elastic modulus and yield strength of the cast composite were found to be quite comparable to those of the extruded composite, however, the extrusion process considerably improved the ductility and fracture strength of the composite by effectively eliminating the cast porosities. Low-cycle fatigue lives of the cast alloy and composite were shorter than those of the extruded counterparts. Large difference in life between cast and extruded composites was attributed to the higher influence of the cast porosities on the fatigue life of the composite than that of the unreinforced alloy material. A fatigue damage parameter using strain energy density effectively represented the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced alloy.