• Title/Summary/Keyword: low-computational

Search Result 2,001, Processing Time 0.028 seconds

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

Drag Reduction Design for a Long-endurance Electric Powered UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • This study presents computational analyses for low-drag aerodynamic design that are applied to modify a long-endurance UAV. EAV-2 is a test-bed for a hybrid electric power system (fuel cell and solar cell) that was developed by the Korean Aerospace Research Institute (KARI) for use in future long-endurance UAVs. The computational investigation focuses on designing a wing with a reduced drag since this is the main contributor of the aerodynamic drag. The airfoil and wing aspect ratio of the least drag are defined, the fuselage configuration is modified, and raked wingtips are implemented to further reduce the profile and induced drag of EAV-2. The results indicate that the total drag was reduced by 54% relative to EAV-1, which was a small-sized version that was previously developed. In addition, static stabilities can be achieved in the longitudinal and lateral-directional by this low-drag configuration. A long-endurance flight test of 22 hours proves that the low-drag design for EAV-2 is effective and that the average power consumption is lower than the objective cruise powerof 200 Watts.

NUMERICAL SIMULATIONS OF LOW- AND HIGH-FREQUENCY BUZZ AROUND AN AXISYMMETRIC SUPERSONIC INLET (축대칭 초음속 흡입구 주위의 저주파수 및 고주파수 버즈(Buzz)에 대한 수치모사)

  • Kwak, E.;Lee, N.;Gong, H.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 2013
  • In this paper, numerical simulations of both low- and high-frequency buzz phenomena at the throttle ratios (T.R.) in Nagashima's experiment are performed. The dominant frequencies of the low-and high-frequency buzz in the experiment are about 109 Hz with T.R.=0.97 and 376 Hz with T.R.=0.55, respectively. An axisymmetric solver with the S-A turbulence model is used for the simulations, and DFT(Discrete Fourier Transform) on pressure histories is conducted for the buzz frequency analysis. In the present simulations, the free-stream Mach number and the Reynolds number based on the inlet diameter are 2 and $10^7$, respectively. Both the low- and high-frequency buzz phenomena are accomplished without the changes in the grid topology. The dominant frequency of the simulation is about 125 Hz with T.R.=0.97, while it is 399 Hz with T.R.=0.55.

Computational Analysis of an Inverted-type Cross-flow Turbine for Ultra-low head Conditions (전산유체역학을 이용한 초저낙차 상황에서의 도립형 횡류수차의 해석 및 설계 최적화)

  • Ham, Sangwoo;Ha, Hojin;Lee, Jeong Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.76-86
    • /
    • 2019
  • The cross-flow turbine is a key hydraulic power system that is widely due to low costs, high efficiency, and low maintenance. In particular, the cross-flow turbine considered as the most suitable turbine for low head situations as it is known to operate down to 5 m of water head. However, the conventional cross-flow turbine is unsuitable for ultra-low head situations with less than a 3 m water head. In this study, we propose an inverted-type cross-flow turbine to overcome the limitations of conventional cross-flow turbines under ultra-low head situations. First, we described the limitations of conventional turbines and suggested a new turbine for the ultra-low head circumstances. Second, we investigated the performance of the new turbine using CFD analysis. Results demonstrated the effects of the design parameters, such as number of blades and rotor diameter ratio, on the performance of the suggested turbine. As a result, we developed an inverted-type cross-flow turbine with up to 60% efficiency under low water head conditions.

NUMERICAL SIMULATION OF FLOW AND HEAT TRANSFER IN A COOLING CHANNEL WITH STAGGERED V-SHAPED RIBS (엇갈린 V-형 리브가 부착된 냉각유로에서의 열유동 수치해석)

  • Myong, H.K.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.107-113
    • /
    • 2008
  • The present study numerically simulates the flow and heat transfer characteristics of rib-induced secondary flow in a square cooling channel with staggered V-shaped ribs, extruded on both walls. The rib pitch-to-height ratio (p/h) varies from 2.8 to 10 with the rib-height-to-hydraulic diameter ration (h/$D_h$)of 0.07 and the Reynolds number of 50,000. Shear stress transport (SST) turbulence model is used as a turbulence model. Computational results show that complex secondary flow patterns are generated in the channel due to the snaking flow in the streamwise direction for all tested cases. In the range of p/h=5 to 10 the staggered V-shaped rib gives about 3 times higher heat transfer augmentation than the reference smooth pipe with high heat transfer on both front side and the area around the leading edge of the ribs, while the former cases give about 18 times higher streamwise pressure drop than the latter ones. However, for the thermal performances, based on the equal pumping power condition, the case of p/h=2.8 gives the best result among three cases, mainly due to relatively low streamwise pressure drop, although it gives relatively low heat transfer augmentation.

Computational Fluid Dynamics Modeling Studies on Bacterial Flagellar Motion

  • Kumar, Manickam Siva;Philominathan, Pichai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.341-348
    • /
    • 2011
  • The study of bacterial flagellar swimming motion remains an interesting and challenging research subject in the fields of hydrodynamics and bio-locomotion. This swimming motion is characterized by very low Reynolds numbers, which is unique and time reversible. In particular, the effect of rotation of helical flagella of bacterium on swimming motion requires detailed multi-disciplinary analysis. Clear understanding of such swimming motion will not only be beneficial for biologists but also to engineers interested in developing nanorobots mimicking bacterial swimming. In this paper, computational fluid dynamics (CFD) simulation of a three dimensional single flagellated bacteria has been developed and the fluid flow around the flagellum is investigated. CFD-based modeling studies were conducted to find the variables that affect the forward thrust experienced by the swimming bacterium. It is found that the propulsive force increases with increase in rotational velocity of flagellum and viscosity of surrounding fluid. It is also deduced from the study that the forward force depends on the geometry of helical flagella (directly proportional to square of the helical radius and inversely proportional to pitch).

On the computation of low-subsonic turbulent pipe flow noise with a hybrid LES/LPCE method

  • Hwang, Seungtae;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Aeroacoustic computation of a fully-developed turbulent pipe flow at $Re_{\tau}=175$ and M = 0.1 is conducted by LES/LPCE hybrid method. The generation and propagation of acoustic waves are computed by solving the linearized perturbed compressible equations (LPCE), with acoustic source DP(x,t)/Dt attained by the incompressible large eddy simulation (LES). The computed acoustic power spectral density is closely compared with the wall shear-stress dipole source of a turbulent channel flow at $Re_{\tau}=175$. A constant decaying rate of the acoustic power spectrum, $f^{-8/5}$ is found to be related to the turbulent bursts of the correlated longitudinal structures such as hairpin vortex and their merged structures (or hairpin packets). The power spectra of the streamwise velocity fluctuations across the turbulent boundary layer indicate that the most intensive noise at ${\omega}^+$ < 0.1 is produced in the buffer layer with fluctuations of the longitudinal structures ($k_zR$ < 1.5).

A Numerical Simulation on the Process of Diaphragm Opening in Shock Tube Flows

  • Kang, M.S.;Nagdewe, S.;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.275-280
    • /
    • 2008
  • Shock tube flow measurement has been often troubled with a finite opening time of diaphragm, but there is no systematic work to investigate its effect on the shock tube flow. In the present study, both the experimental and computational works have been performed on the shock tube flows at low pressure ratios. The computational analysis has been performed using the two-dimensional, unsteady, compressible Navier-Stokes equations, based upon a TVD MUSCL finite difference scheme. It is known that the present computational results reproduce the experimental data with good accuracy and simulate successfully the process of diaphragm opening as a function of time. The concept of an imaginary center is introduced to specify the non-centered expansion wave due to a finite opening time of diaphragm. The results obtained show that the diaphragm opening time is reduced as the initial pressure ratio of shock tube increases, leading to the effect of a finite opening time of diaphragm to be more remarkable at low pressure ratios.

  • PDF

Low Power LDPC Deocder Using Adaptive Forced Convergence algorithm (적응형 강제 수렴 기법을 이용한 저전력 LDPC 복호기)

  • Choi, Byung Jun;Bae, JeongHyeon;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.36-41
    • /
    • 2016
  • LDPC code has beend applied in recent communication standards, such as Wi-Fi, WiGig, 10GBased-T Ethernet as a forward error correction code. However, LDPC code is required a large amount of computational complexity due to large iterations and block lengths for high performances. To solve this problem, various research has been continously performed for reducing computational complexity. In this paper, we propose AFC algorithm to deactive the variable and check node for reduce the computational complexity.

A Computational Study of the Vortical Flows over a Delta Wing At High-Angle of Attack (고영각의 델타익에서 발생하는 와유동에 관한 수치해석적 연구)

  • Kim Hyun-Sub;Kweon Yong-Hun;Kim Heuy-Dong;Shon Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.795-798
    • /
    • 2002
  • This paper dispicts the vortical flow characteristics over a delta wing using a computational analysis for the purpose of investigating and visualizing the effect of the angle of attack and fee stream velocity on the low-speed delta wing aerodynamics. Computations are applied to the full, 3-dimensional, compressible, Navier-Stokes Equations. In computations, the free stream velocity is changed between 20m/s and 60m/s and the angle of attack of the delta wing is changed between $16^{\circ}\;and\;28^{\circ}$. For the correct prediction of the major features associated with the delta wing vortex flows, various turbulence models are tested. The standard $k-{\varepsilon}$ turbulence model predict well the vertical flows over the delta wing. Computational results are compared with the previous experimental ones. It is found that the present CFD results predict the vortical flow characteristics over the delta wing, and with an increase in the free steam velocity, the leading edge vortex moves outboard and its streangth is increased.

  • PDF