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Abstract

Aeroacoustic computation of a fully-developed turbulent pipe flow at Reτ = 175 and M = 0.1 is conducted by LES/LPCE 

hybrid method. The generation and propagation of acoustic waves are computed by solving the linearized perturbed 

compressible equations (LPCE), with acoustic source DP(x,t)/Dt attained by the incompressible large eddy simulation (LES). 

The computed acoustic power spectral density is closely compared with the wall shear-stress dipole source of a turbulent 

channel flow at Reτ = 175. A constant decaying rate of the acoustic power spectrum, f  -8/5 is found to be related to the turbulent 

bursts of the correlated longitudinal structures such as hairpin vortex and their merged structures (or hairpin packets). The 

power spectra of the streamwise velocity fluctuations across the turbulent boundary layer indicate that the most intensive 

noise at ω+ < 0.1 is produced in the buffer layer with fluctuations of the longitudinal structures (kzR < 1.5). 
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1. Introduction

While many research groups have addressed the exterior 

noise issues posed by aircrafts during take-off and landing, 

e.g. trailing-edge noise, slat noise, landing gear noise, etc., 

insufficient efforts have been made to understand and 

reduce the aerodynamic noise generated by the aircraft 

internal cooling and ventilation systems (called ECS for 

Environmental Control System). Many interactions take 

place between sub-components of a given ECS: the blower 

unit, temperature and pressure regulating devices, or simply 

duct connections, and ECS is indeed a contributor to the 

noise perceived by passengers and crew within the cabin and 

cockpit. For example, interior noise induced by ECS exceeds 

the other noise sources such as external turbulent boundary 

layer, or electronic equipment(e/e) cooling in the most 

disturbing frequency range, 100 Hz < f < 1000 Hz. In fact, ECS 

noise exhibits a tonal broaden peak, 15 - 25 dB higher than the 

others at f = 300 Hz[1]. 

In the present study, we are interested in computational 

modeling and understanding in detail the noise generating 

mechanisms  of  low-subsonic, turbulent flow in the ventilation 

pipe, the most basic unit of ECS. The noise produced by 

turbulent boundary layer (called TBL from hereafter) has 

been an important issue in turbulent flow research for more 

than fifty years. It is generally known that the TBL noise is 

generated indeed by convecting near-wall turbulences. The 

TBL noise is either emitted into ambient air, or transmitted 

through the walls via (i) acoustic loading and (ii) pressure 

fluctuations at the wall surface. Note that the energy level of 

the acoustic loading is much lower but its transmission can be 

comparable when a transfer function is considered.

The TBL noise transmission is often concerned at low 

wavenumbers because it is more likely to interact with 

structures by resonance effect. On the low-wavenumber 

acoustics, a few but very intensive theoretical studies have 

been conducted since 1950's; the Kraichnan-Phillips theorem 

asserted that the wall pressure fluctuation spectrum converges 

to zero in a sub-convective region (i.e. axial wavenumber is 

less than ω/U∞ but still larger than ω/c). Ffowcs-williams[2] 
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showed later in his theoretical work that the spectral level 

of wall pressure fluctuation at the sub-convective and 

acoustic regimes must have a finite non-zero value, with the 

compressibility effect included in the analysis.     

Along the line, Arguillat et al.[3] measured the wall 

pressure fluctuations in a turbulent channel flow at low Mach 

numbers and showed that when the noise transmission is 

included in the analysis, not only the aerodynamic loading 

by hydrodynamic pressure but also the effect of the low 

wavenumber (acoustic part) have to be taken into account. 

Hu et al.[4] also attempted to quantify the noise sources 

in the turbulent channel flow with incompressible direct 

numerical simulation (DNS) and predicted the acoustic 

pressure fluctuations at low Mach numbers with the 

Lighthill's acoustic analogy. They found that the acoustic 

pressure fluctuation of the dipole source is more dominant 

below a specific Mach number (e.g. M  <  0.1).

In the present study, aeroacoustic computation of a 

fully-developed turbulent pipe flow is conducted at low 

Mach number. This task is computationally challenging 

since acoustic field is superimposed on the flow field within 

the pipe. An LES/LPCE hybrid method is thereby used to 

solve the hydrodynamic field and acoustic field separately 

with different grid systems. An incompressible large-eddy 

simulation (LES) is conducted for a fully developed turbulent 

flow at Reτ = 175, employing a computational domain of 22 

pipe-diameters in length. The acoustic field inside the pipe 

is computed at M = 0.1 by solving the linearized perturbed 

compressible equation (LPCE), with acoustic source DP/

Dt acquired from the incompressible LES solution. The 

computational acoustic grid is elaborately arranged such 

that turbulent flow field with acoustic source can be filtered 

in the acoustic monitoring zones. A duct mode and acoustic 

power spectrum of the turbulent pipe flow noise are 

analyzed and discussed along with an acoustic source model 

proposed by Morfey[5], i.e. the wall shear-stress fluctuation 

acoustic dipole. To investigate the noise sources, the spectral 

characteristics of the axial velocity fluctuations are examined 

across the turbulent boundary layer.

This paper is organized as follows. In Sec. II, the 

computational methodologies are described. The results and 

discussion of hydrodynamics and acoustics of turbulent pipe 

flow follow in Sec. III and IV. Finally, the paper provides the 

conclusion.

2. LES/LPCE Hybrid Formulation

The present LES/LPCE hybrid method is based on a 

hydrodynamic/acoustic splitting method(Hardin et al.[6]), 

in which the total flow variables are decomposed into the 

incompressible and perturbed compressible variables as, 

(1)

The incompressible variables represent the hydrodynamic 

flow field, while the acoustic fluctuations and other 

compressibility effects are resolved by the perturbed 

quantities denoted by ('). 

The hydrodynamic turbulent flow field is first solved by 

incompressible LES. The filtered incompressible Navier-

Stokes equations are written as,
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where the grid-resolved quantities are denoted 

by (~) and the unknown sub-grid tensor 𝑀𝑀𝑖𝑖𝑖𝑖 is 
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Here, ∆ is the mean radius of the grid cells 

(computed as cubic root of its volume), and 𝑆̃𝑆𝑖𝑖𝑖𝑖 
is the strain-rate tensor.  

After a quasi-periodic stage of the 
hydrodynamic field is attained, the perturbed 
quantities are computed by the linearized 

perturbed compressible equations (LPCE)(Seo 
et al.[7]). A set of the linearized perturbed 
compressible equations is written as, 

 
𝜕𝜕𝜌𝜌′
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The left hand side of LPCE represents effects 

of acoustic wave propagation and refraction in 
an unsteady, inhomogeneous flow, while the 
right hand side only contains an explicit acoustic 
source component, which is projected from the 
incompressible LES flow solution. It is 
interesting to note that for low Mach number 
flows, the total derivative of the hydrodynamic 
pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
linearized perturbed momentum equations, 
E q . ( 6 )  y i e l d s 

 
𝜕𝜕𝜔⃗⃗⃗⃗𝜔′
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of perturbed vorticity in time, in fact, the 
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errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-

(a)                                                                       (b) 
Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
constant plane and (b) z-constant plane. 

(2)
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the unknown sub-grid tensor Mij is modeled as

3 

conclusion. 
 

2. LES/LPCE HYBRID FORMULATION 
 

The present LES/LPCE hybrid method is 
based on a hydrodynamic/acoustic splitting 
method(Hardin et al.[6]), in which the total flow 
variables are decomposed into the 
incompressible and perturbed compressible 
variables as,  

 
       ρ 𝑥⃗𝑥       𝜌𝜌0 + 𝜌𝜌′ 𝑥⃗𝑥 𝑡𝑡  

𝑢⃗⃗𝑢 𝑥⃗𝑥      𝑈⃗⃗⃗𝑈 𝑥⃗𝑥 𝑡𝑡 + 𝑢⃗⃗𝑢′ 𝑥⃗𝑥 𝑡𝑡    (1) 
p 𝑥⃗𝑥       𝑃𝑃 𝑥⃗𝑥 𝑡𝑡 + 𝑝𝑝′ 𝑥⃗𝑥 𝑡𝑡  

 
The incompressible variables represent the 
hydrodynamic flow field, while the acoustic 
fluctuations and other compressibility effects are 
resolved by the perturbed quantities denoted by 
(′).  

The hydrodynamic turbulent flow field is first 
solved by incompressible LES. The filtered 
incompressible Navier-Stokes equations are 
written as, 

 
𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

                  (2) 

𝜌𝜌0
𝜕𝜕𝑈̃𝑈𝑖𝑖
𝜕𝜕𝜕𝜕 + 𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗) 

  − 𝜕𝜕𝑃̃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇0
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝜕𝜕𝑈̃𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
) −  𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
𝑀𝑀𝑖𝑖𝑖𝑖       

(3) 
 
where the grid-resolved quantities are denoted 

by (~) and the unknown sub-grid tensor 𝑀𝑀𝑖𝑖𝑖𝑖 is 
modeled as 

 
𝑀𝑀𝑖𝑖𝑖𝑖   𝑈𝑈𝑖𝑖𝑈𝑈𝑗̃𝑗 −  𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗   −2 𝐶𝐶𝑠𝑠∆ 2|𝑆̃𝑆|S̃𝑖𝑖𝑖𝑖 (4) 
 
Here, ∆ is the mean radius of the grid cells 

(computed as cubic root of its volume), and 𝑆̃𝑆𝑖𝑖𝑖𝑖 
is the strain-rate tensor.  

After a quasi-periodic stage of the 
hydrodynamic field is attained, the perturbed 
quantities are computed by the linearized 

perturbed compressible equations (LPCE)(Seo 
et al.[7]). A set of the linearized perturbed 
compressible equations is written as, 

 
𝜕𝜕𝜌𝜌′
𝜕𝜕𝜕𝜕 + (𝑈⃗⃗⃗𝑈 ∙ ∇)𝜌𝜌′ + 𝜌𝜌0 ∇ ∙ 𝑢⃗⃗𝑢′         (5) 
 
𝜕𝜕𝑢⃗⃗⃗𝑢′
𝜕𝜕𝜕𝜕 + ∇(𝑢⃗⃗𝑢′ ∙ 𝑈⃗⃗⃗𝑈)+ 1𝜌𝜌𝑘𝑘 ∇𝑝𝑝

′           (6) 

  𝜕𝜕𝑝𝑝
′

𝜕𝜕𝜕𝜕 + (𝑈⃗⃗⃗𝑈 ∙ ∇)𝑝𝑝′ +  𝛾𝛾𝛾𝛾 ∇ ∙ 𝑢⃗⃗𝑢′ +  𝑢⃗⃗𝑢′ ∙ ∇ 𝑃𝑃  
                            −𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷     (7) 
 
The left hand side of LPCE represents effects 

of acoustic wave propagation and refraction in 
an unsteady, inhomogeneous flow, while the 
right hand side only contains an explicit acoustic 
source component, which is projected from the 
incompressible LES flow solution. It is 
interesting to note that for low Mach number 
flows, the total derivative of the hydrodynamic 
pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
linearized perturbed momentum equations, 
E q . ( 6 )  y i e l d s 

 
𝜕𝜕𝜔⃗⃗⃗⃗𝜔′
𝜕𝜕𝜕𝜕                (8)  

 
The LPCE prevents any further 

changes(generation, convection and decaying) 
of perturbed vorticity in time, in fact, the 
perturbed vorticity could generate self-excited 
errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-

(a)                                                                       (b) 
Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
constant plane and (b) z-constant plane. 

(4)

Here, ∆ is the mean radius of the grid cells (computed as 

cubic root of its volume), and 
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2. LES/LPCE HYBRID FORMULATION 
 

The present LES/LPCE hybrid method is 
based on a hydrodynamic/acoustic splitting 
method(Hardin et al.[6]), in which the total flow 
variables are decomposed into the 
incompressible and perturbed compressible 
variables as,  

 
       ρ 𝑥⃗𝑥       𝜌𝜌0 + 𝜌𝜌′ 𝑥⃗𝑥 𝑡𝑡  

𝑢⃗⃗𝑢 𝑥⃗𝑥      𝑈⃗⃗⃗𝑈 𝑥⃗𝑥 𝑡𝑡 + 𝑢⃗⃗𝑢′ 𝑥⃗𝑥 𝑡𝑡    (1) 
p 𝑥⃗𝑥       𝑃𝑃 𝑥⃗𝑥 𝑡𝑡 + 𝑝𝑝′ 𝑥⃗𝑥 𝑡𝑡  

 
The incompressible variables represent the 
hydrodynamic flow field, while the acoustic 
fluctuations and other compressibility effects are 
resolved by the perturbed quantities denoted by 
(′).  

The hydrodynamic turbulent flow field is first 
solved by incompressible LES. The filtered 
incompressible Navier-Stokes equations are 
written as, 

 
𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

                  (2) 

𝜌𝜌0
𝜕𝜕𝑈̃𝑈𝑖𝑖
𝜕𝜕𝜕𝜕 + 𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗) 

  − 𝜕𝜕𝑃̃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇0
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝜕𝜕𝑈̃𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
) −  𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
𝑀𝑀𝑖𝑖𝑖𝑖       

(3) 
 
where the grid-resolved quantities are denoted 

by (~) and the unknown sub-grid tensor 𝑀𝑀𝑖𝑖𝑖𝑖 is 
modeled as 

 
𝑀𝑀𝑖𝑖𝑖𝑖   𝑈𝑈𝑖𝑖𝑈𝑈𝑗̃𝑗 −  𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗   −2 𝐶𝐶𝑠𝑠∆ 2|𝑆̃𝑆|S̃𝑖𝑖𝑖𝑖 (4) 
 
Here, ∆ is the mean radius of the grid cells 

(computed as cubic root of its volume), and 𝑆̃𝑆𝑖𝑖𝑖𝑖 
is the strain-rate tensor.  

After a quasi-periodic stage of the 
hydrodynamic field is attained, the perturbed 
quantities are computed by the linearized 

perturbed compressible equations (LPCE)(Seo 
et al.[7]). A set of the linearized perturbed 
compressible equations is written as, 

 
𝜕𝜕𝜌𝜌′
𝜕𝜕𝜕𝜕 + (𝑈⃗⃗⃗𝑈 ∙ ∇)𝜌𝜌′ + 𝜌𝜌0 ∇ ∙ 𝑢⃗⃗𝑢′         (5) 
 
𝜕𝜕𝑢⃗⃗⃗𝑢′
𝜕𝜕𝜕𝜕 + ∇(𝑢⃗⃗𝑢′ ∙ 𝑈⃗⃗⃗𝑈)+ 1𝜌𝜌𝑘𝑘 ∇𝑝𝑝

′           (6) 

  𝜕𝜕𝑝𝑝
′

𝜕𝜕𝜕𝜕 + (𝑈⃗⃗⃗𝑈 ∙ ∇)𝑝𝑝′ +  𝛾𝛾𝛾𝛾 ∇ ∙ 𝑢⃗⃗𝑢′ +  𝑢⃗⃗𝑢′ ∙ ∇ 𝑃𝑃  
                            −𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷     (7) 
 
The left hand side of LPCE represents effects 

of acoustic wave propagation and refraction in 
an unsteady, inhomogeneous flow, while the 
right hand side only contains an explicit acoustic 
source component, which is projected from the 
incompressible LES flow solution. It is 
interesting to note that for low Mach number 
flows, the total derivative of the hydrodynamic 
pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
linearized perturbed momentum equations, 
E q . ( 6 )  y i e l d s 

 
𝜕𝜕𝜔⃗⃗⃗⃗𝜔′
𝜕𝜕𝜕𝜕                (8)  

 
The LPCE prevents any further 

changes(generation, convection and decaying) 
of perturbed vorticity in time, in fact, the 
perturbed vorticity could generate self-excited 
errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-

(a)                                                                       (b) 
Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
constant plane and (b) z-constant plane. 

 is the strain-rate tensor. 

After a quasi-periodic stage of the hydrodynamic field 

is attained, the perturbed quantities are computed by the 

linearized perturbed compressible equations (LPCE)(Seo 

and Moon[7]). A set of the linearized perturbed compressible 

equations is written as,
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2. LES/LPCE HYBRID FORMULATION 
 

The present LES/LPCE hybrid method is 
based on a hydrodynamic/acoustic splitting 
method(Hardin et al.[6]), in which the total flow 
variables are decomposed into the 
incompressible and perturbed compressible 
variables as,  

 
       ρ 𝑥⃗𝑥       𝜌𝜌0 + 𝜌𝜌′ 𝑥⃗𝑥 𝑡𝑡  

𝑢⃗⃗𝑢 𝑥⃗𝑥      𝑈⃗⃗⃗𝑈 𝑥⃗𝑥 𝑡𝑡 + 𝑢⃗⃗𝑢′ 𝑥⃗𝑥 𝑡𝑡    (1) 
p 𝑥⃗𝑥       𝑃𝑃 𝑥⃗𝑥 𝑡𝑡 + 𝑝𝑝′ 𝑥⃗𝑥 𝑡𝑡  

 
The incompressible variables represent the 
hydrodynamic flow field, while the acoustic 
fluctuations and other compressibility effects are 
resolved by the perturbed quantities denoted by 
(′).  

The hydrodynamic turbulent flow field is first 
solved by incompressible LES. The filtered 
incompressible Navier-Stokes equations are 
written as, 

 
𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

                  (2) 

𝜌𝜌0
𝜕𝜕𝑈̃𝑈𝑖𝑖
𝜕𝜕𝜕𝜕 + 𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗) 

  − 𝜕𝜕𝑃̃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇0
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝜕𝜕𝑈̃𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
) −  𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
𝑀𝑀𝑖𝑖𝑖𝑖       

(3) 
 
where the grid-resolved quantities are denoted 

by (~) and the unknown sub-grid tensor 𝑀𝑀𝑖𝑖𝑖𝑖 is 
modeled as 

 
𝑀𝑀𝑖𝑖𝑖𝑖   𝑈𝑈𝑖𝑖𝑈𝑈𝑗̃𝑗 −  𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗   −2 𝐶𝐶𝑠𝑠∆ 2|𝑆̃𝑆|S̃𝑖𝑖𝑖𝑖 (4) 
 
Here, ∆ is the mean radius of the grid cells 

(computed as cubic root of its volume), and 𝑆̃𝑆𝑖𝑖𝑖𝑖 
is the strain-rate tensor.  

After a quasi-periodic stage of the 
hydrodynamic field is attained, the perturbed 
quantities are computed by the linearized 

perturbed compressible equations (LPCE)(Seo 
et al.[7]). A set of the linearized perturbed 
compressible equations is written as, 

 
𝜕𝜕𝜌𝜌′
𝜕𝜕𝜕𝜕 + (𝑈⃗⃗⃗𝑈 ∙ ∇)𝜌𝜌′ + 𝜌𝜌0 ∇ ∙ 𝑢⃗⃗𝑢′         (5) 
 
𝜕𝜕𝑢⃗⃗⃗𝑢′
𝜕𝜕𝜕𝜕 + ∇(𝑢⃗⃗𝑢′ ∙ 𝑈⃗⃗⃗𝑈)+ 1𝜌𝜌𝑘𝑘 ∇𝑝𝑝

′           (6) 

  𝜕𝜕𝑝𝑝
′

𝜕𝜕𝜕𝜕 + (𝑈⃗⃗⃗𝑈 ∙ ∇)𝑝𝑝′ +  𝛾𝛾𝛾𝛾 ∇ ∙ 𝑢⃗⃗𝑢′ +  𝑢⃗⃗𝑢′ ∙ ∇ 𝑃𝑃  
                            −𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷     (7) 
 
The left hand side of LPCE represents effects 

of acoustic wave propagation and refraction in 
an unsteady, inhomogeneous flow, while the 
right hand side only contains an explicit acoustic 
source component, which is projected from the 
incompressible LES flow solution. It is 
interesting to note that for low Mach number 
flows, the total derivative of the hydrodynamic 
pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
linearized perturbed momentum equations, 
E q . ( 6 )  y i e l d s 

 
𝜕𝜕𝜔⃗⃗⃗⃗𝜔′
𝜕𝜕𝜕𝜕                (8)  

 
The LPCE prevents any further 

changes(generation, convection and decaying) 
of perturbed vorticity in time, in fact, the 
perturbed vorticity could generate self-excited 
errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-

(a)                                                                       (b) 
Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
constant plane and (b) z-constant plane. 

(5)
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2. LES/LPCE HYBRID FORMULATION 
 

The present LES/LPCE hybrid method is 
based on a hydrodynamic/acoustic splitting 
method(Hardin et al.[6]), in which the total flow 
variables are decomposed into the 
incompressible and perturbed compressible 
variables as,  

 
       ρ 𝑥⃗𝑥       𝜌𝜌0 + 𝜌𝜌′ 𝑥⃗𝑥 𝑡𝑡  

𝑢⃗⃗𝑢 𝑥⃗𝑥      𝑈⃗⃗⃗𝑈 𝑥⃗𝑥 𝑡𝑡 + 𝑢⃗⃗𝑢′ 𝑥⃗𝑥 𝑡𝑡    (1) 
p 𝑥⃗𝑥       𝑃𝑃 𝑥⃗𝑥 𝑡𝑡 + 𝑝𝑝′ 𝑥⃗𝑥 𝑡𝑡  

 
The incompressible variables represent the 
hydrodynamic flow field, while the acoustic 
fluctuations and other compressibility effects are 
resolved by the perturbed quantities denoted by 
(′).  

The hydrodynamic turbulent flow field is first 
solved by incompressible LES. The filtered 
incompressible Navier-Stokes equations are 
written as, 

 
𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

                  (2) 

𝜌𝜌0
𝜕𝜕𝑈̃𝑈𝑖𝑖
𝜕𝜕𝜕𝜕 + 𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗) 

  − 𝜕𝜕𝑃̃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇0
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝜕𝜕𝑈̃𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
) −  𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
𝑀𝑀𝑖𝑖𝑖𝑖       

(3) 
 
where the grid-resolved quantities are denoted 

by (~) and the unknown sub-grid tensor 𝑀𝑀𝑖𝑖𝑖𝑖 is 
modeled as 

 
𝑀𝑀𝑖𝑖𝑖𝑖   𝑈𝑈𝑖𝑖𝑈𝑈𝑗̃𝑗 −  𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗   −2 𝐶𝐶𝑠𝑠∆ 2|𝑆̃𝑆|S̃𝑖𝑖𝑖𝑖 (4) 
 
Here, ∆ is the mean radius of the grid cells 

(computed as cubic root of its volume), and 𝑆̃𝑆𝑖𝑖𝑖𝑖 
is the strain-rate tensor.  

After a quasi-periodic stage of the 
hydrodynamic field is attained, the perturbed 
quantities are computed by the linearized 

perturbed compressible equations (LPCE)(Seo 
et al.[7]). A set of the linearized perturbed 
compressible equations is written as, 

 
𝜕𝜕𝜌𝜌′
𝜕𝜕𝜕𝜕 + (𝑈⃗⃗⃗𝑈 ∙ ∇)𝜌𝜌′ + 𝜌𝜌0 ∇ ∙ 𝑢⃗⃗𝑢′         (5) 
 
𝜕𝜕𝑢⃗⃗⃗𝑢′
𝜕𝜕𝜕𝜕 + ∇(𝑢⃗⃗𝑢′ ∙ 𝑈⃗⃗⃗𝑈)+ 1𝜌𝜌𝑘𝑘 ∇𝑝𝑝

′           (6) 

  𝜕𝜕𝑝𝑝
′

𝜕𝜕𝜕𝜕 + (𝑈⃗⃗⃗𝑈 ∙ ∇)𝑝𝑝′ +  𝛾𝛾𝛾𝛾 ∇ ∙ 𝑢⃗⃗𝑢′ +  𝑢⃗⃗𝑢′ ∙ ∇ 𝑃𝑃  
                            −𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷     (7) 
 
The left hand side of LPCE represents effects 

of acoustic wave propagation and refraction in 
an unsteady, inhomogeneous flow, while the 
right hand side only contains an explicit acoustic 
source component, which is projected from the 
incompressible LES flow solution. It is 
interesting to note that for low Mach number 
flows, the total derivative of the hydrodynamic 
pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
linearized perturbed momentum equations, 
E q . ( 6 )  y i e l d s 

 
𝜕𝜕𝜔⃗⃗⃗⃗𝜔′
𝜕𝜕𝜕𝜕                (8)  

 
The LPCE prevents any further 

changes(generation, convection and decaying) 
of perturbed vorticity in time, in fact, the 
perturbed vorticity could generate self-excited 
errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-

(a)                                                                       (b) 
Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
constant plane and (b) z-constant plane. 

(6)

3 
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2. LES/LPCE HYBRID FORMULATION 
 

The present LES/LPCE hybrid method is 
based on a hydrodynamic/acoustic splitting 
method(Hardin et al.[6]), in which the total flow 
variables are decomposed into the 
incompressible and perturbed compressible 
variables as,  

 
       ρ 𝑥⃗𝑥       𝜌𝜌0 + 𝜌𝜌′ 𝑥⃗𝑥 𝑡𝑡  

𝑢⃗⃗𝑢 𝑥⃗𝑥      𝑈⃗⃗⃗𝑈 𝑥⃗𝑥 𝑡𝑡 + 𝑢⃗⃗𝑢′ 𝑥⃗𝑥 𝑡𝑡    (1) 
p 𝑥⃗𝑥       𝑃𝑃 𝑥⃗𝑥 𝑡𝑡 + 𝑝𝑝′ 𝑥⃗𝑥 𝑡𝑡  

 
The incompressible variables represent the 
hydrodynamic flow field, while the acoustic 
fluctuations and other compressibility effects are 
resolved by the perturbed quantities denoted by 
(′).  

The hydrodynamic turbulent flow field is first 
solved by incompressible LES. The filtered 
incompressible Navier-Stokes equations are 
written as, 

 
𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

                  (2) 

𝜌𝜌0
𝜕𝜕𝑈̃𝑈𝑖𝑖
𝜕𝜕𝜕𝜕 + 𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝑈̃𝑈𝑖𝑖𝑈̃𝑈𝑗𝑗) 

  − 𝜕𝜕𝑃̃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇0
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
(𝜕𝜕𝑈̃𝑈𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑈̃𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
) −  𝜌𝜌0

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
𝑀𝑀𝑖𝑖𝑖𝑖       

(3) 
 
where the grid-resolved quantities are denoted 

by (~) and the unknown sub-grid tensor 𝑀𝑀𝑖𝑖𝑖𝑖 is 
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Here, ∆ is the mean radius of the grid cells 

(computed as cubic root of its volume), and 𝑆̃𝑆𝑖𝑖𝑖𝑖 
is the strain-rate tensor.  

After a quasi-periodic stage of the 
hydrodynamic field is attained, the perturbed 
quantities are computed by the linearized 

perturbed compressible equations (LPCE)(Seo 
et al.[7]). A set of the linearized perturbed 
compressible equations is written as, 
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The left hand side of LPCE represents effects 

of acoustic wave propagation and refraction in 
an unsteady, inhomogeneous flow, while the 
right hand side only contains an explicit acoustic 
source component, which is projected from the 
incompressible LES flow solution. It is 
interesting to note that for low Mach number 
flows, the total derivative of the hydrodynamic 
pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
linearized perturbed momentum equations, 
E q . ( 6 )  y i e l d s 
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The LPCE prevents any further 

changes(generation, convection and decaying) 
of perturbed vorticity in time, in fact, the 
perturbed vorticity could generate self-excited 
errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-

(a)                                                                       (b) 
Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
constant plane and (b) z-constant plane. 
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method(Hardin et al.[6]), in which the total flow 
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pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
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of perturbed vorticity in time, in fact, the 
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errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-
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Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
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(computed as cubic root of its volume), and 𝑆̃𝑆𝑖𝑖𝑖𝑖 
is the strain-rate tensor.  

After a quasi-periodic stage of the 
hydrodynamic field is attained, the perturbed 
quantities are computed by the linearized 

perturbed compressible equations (LPCE)(Seo 
et al.[7]). A set of the linearized perturbed 
compressible equations is written as, 
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of acoustic wave propagation and refraction in 
an unsteady, inhomogeneous flow, while the 
right hand side only contains an explicit acoustic 
source component, which is projected from the 
incompressible LES flow solution. It is 
interesting to note that for low Mach number 
flows, the total derivative of the hydrodynamic 
pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
linearized perturbed momentum equations, 
E q . ( 6 )  y i e l d s 
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The LPCE prevents any further 

changes(generation, convection and decaying) 
of perturbed vorticity in time, in fact, the 
perturbed vorticity could generate self-excited 
errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-
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Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
constant plane and (b) z-constant plane. 
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has little effects on noise generation, particularly 
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where the grid-resolved quantities are denoted 

by (~) and the unknown sub-grid tensor 𝑀𝑀𝑖𝑖𝑖𝑖 is 
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Here, ∆ is the mean radius of the grid cells 

(computed as cubic root of its volume), and 𝑆̃𝑆𝑖𝑖𝑖𝑖 
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After a quasi-periodic stage of the 
hydrodynamic field is attained, the perturbed 
quantities are computed by the linearized 

perturbed compressible equations (LPCE)(Seo 
et al.[7]). A set of the linearized perturbed 
compressible equations is written as, 
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of acoustic wave propagation and refraction in 
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right hand side only contains an explicit acoustic 
source component, which is projected from the 
incompressible LES flow solution. It is 
interesting to note that for low Mach number 
flows, the total derivative of the hydrodynamic 
pressure, DP/Dt is only considered as the 
explicit noise source term. From the curl of 
linearized perturbed momentum equations, 
E q . ( 6 )  y i e l d s 
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The LPCE prevents any further 

changes(generation, convection and decaying) 
of perturbed vorticity in time, in fact, the 
perturbed vorticity could generate self-excited 
errors if  ′ is not properly resolved with the 
acoustic grid. Hence, the evolution of the 
perturbed vorticity is pre-suppressed in LPCE, 
deliberating the fact that the perturbed vorticity 
has little effects on noise generation, particularly 
at low Mach numbers. For the hybrid method, 
this is an important property that ensures 
consistent, grid-independent acoustic solutions. 
Derivation of LPCE and the detailed discussion 
on characteristics of the perturbed vorticity can 
be found in Seo et al.[7]. 

The filtered incompressible Navier-Stokes 
equations are solved by an iterative fractional-

(a)                                                                       (b) 
Fig. 1. A fully-developed turbulent pipe flow at 𝑅𝑅𝑅𝑅𝐷𝐷  5    (or 𝑅𝑅𝑅𝑅𝜏𝜏   75); streamwise 
velocity 𝑢𝑢𝑧𝑧 , showing only the first half of the computational domain  ≤ z ≤    , (a) θ-
constant plane and (b) z-constant plane. 
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fact, the perturbed vorticity could generate self-excited errors 

if ω' is not properly resolved with the acoustic grid. Hence, 

the evolution of the perturbed vorticity is pre-suppressed 

in LPCE, deliberating the fact that the perturbed vorticity 

has little effects on noise generation, particularly at low 

Mach numbers. For the hybrid method, this is an important 

property that ensures consistent, grid-independent acoustic 

solutions. Derivation of LPCE and the detailed discussion on 

characteristics of the perturbed vorticity can be found in Seo 

and Moon[7].

The filtered incompressible Navier-Stokes equations 

are solved by an iterative fractional-step method(Poisson 

equation for the pressure), wheras the linearized perturbed 

compressible equations are solved in a time marching 

fashion. To avoid excessive numerical dissipations and 

dispersions errors, the governing equations are spatially 

discretized with a sixth-order compact finite difference 

scheme(Lele[8]) and integrated in time by a four-stage 

Runge-Kutta method.

Practically, when a high order scheme is applied to 

stretched meshes, numerical instability is encountered due 

to numerical truncations or failure of capturing high wave-

number phenomena. Thus, a tenth-order spatial filtering(cut-

off wavenumber, k∆x ≈ 2.9) proposed by Gaitonde et al.[9] 

is applied to every iteration to suppress the high frequency 

errors that might be caused by grid non-uniformity. For 

the far-field boundary condition, the energy transfer and 

annihilation (ETA) boundary condition(Edgar et al.[10]) 

with a buffer zone is used for eliminating any reflection of 

the out-going waves. The ETA boundary condition is easily 

facilitated with a rapid grid stretching in the buffer-zone 

and spatial filtering which damp out waves shorter than 

grid spacing. Therefore, if the buffer-zone has a grid spacing 

larger than the outgoing acoustic wave length, the wave can 

be successfully absorbed by the ETA boundary condition.

3. ��Large Eddy Simulation of Turbulent Pipe 
Flow

3.1 Computational modeling of turbulence scales

A fully-developed turbulent pipe flow is computed 

by incompressible large-eddy simulation for the friction 

Reynolds number (also known as Karman number), Reτ 

= R+ = uτR/v = 175 (or ReD = 5000). For the computation of 

fully-developed turbulent pipe flow, a periodic boundary 

condition is to be used in the streamwise direction but one 

has to mind whether the computational domain is long 

enough to include the very large and large scale motions 

(called VLSM and LSM for short). These structures, initially 

observed in the experimental studies (Kim and Adrian[11] 

and Townsend[12]), are of 2-3R to 20R in length (R is the 

pipe radius) in the outer region of the turbulent boundary 

layer. Along the line, Chin et al.[13] conducted a DNS study 

at Reτ = 170 and 500 to investigate the effect of the streamwise 

periodic length on the convergence of turbulence statistics 

and concluded that a streamwise domain length of 

convergence can be achieved with 8πR.

In the present study, we compute not only the turbulent 

pipe flow but also an acoustic field inside the pipe, i.e. 

generation and propagation of sound in the turbulent pipe 

flow. Therefore, the computational domain is set as 44R, large 

enough to analyze the flow and acoustics at the same time. 

The grid size is 120 × 241 × 1560 (about 45 millions) along r, θ, 

and z directions, respectively. The grid resolution in the axial 

direction is ∆z+ = 5.5 (or ∆z = 0.016), and along the azimuthal 

direction, the maximum grid spacing at the pipe wall is R∆θ+ 

= 4.5 (or R∆θ = 0.013). The minimum and maximum wall-

normal grid spacings are ∆r+ = 0.35 and 2.8 (or ∆r = 0.001 and 

0.008), respectively. A time step, ∆t+ = 0.017 (or ∆t = 0.0007) 

is used in the present LES, and the total simulation time is 

about 126R/U∞. The computation was conducted with 600 

processors of SUN B6275.

Figure 1 shows the computed fully-developed turbulent 

pipe flow with the flooded contours of the instantaneous 

streamwise velocity at a θ-constant plane and at a z-constant 

plane, respectively. A total of 30 contour levels are used 

to represent the magnitude of uz from 0.004 (blue) to 1.4 

(red), and the turbulent eddy structures in the pipe are well 

depicted by the present computation.

3.2 Validation of turbulence statistics

The present LES solution is validated by comparing with 

the existing DNS solutions of Khoury et al.[14], who studied 

      

                                                                                                                                      (a)                                                                                                                (b)

Fig. 1. ��A fully-developed turbulent pipe flow at ReD = 5000 (or Reτ = 175); streamwise velocity uz, showing only the first half of the computational 
domain 0 ≤ z ≤ 11D, (a) θ-constant plane and (b) z-constant plane.

(48~55)2016-49.indd   50 2017-04-04   오후 7:25:55



51

Seungtae Hwang    On the computation of low-subsonic turbulent pipe flow noise with a hybrid LES/LPCE method

http://ijass.org

the characteristics of turbulent pipe flow in a smooth circular 

pipe of axial length 25R at ReD = 5300. The inner-scaled mean 

velocity profile of the present calculation is compared in 

Fig. 2(a), and the three components of turbulence intensity, 

u'z,rms, u'θ,rms, u'r,rms are compared in Fig. 2(b). Both comparisons 

indicate excellent agreement with DNS. Fig. 2(c) shows that 

a second-order turbulence statistics, turbulent shear stress is 

also closely compared with the DNS solution. 

A power spectral density of hydrodynamic wall pressure 

fluctuation (scaled with inner flow variable) is presented in 

Fig. 3(a), comparing with that of Gloerfelt and Berland[15] 

(a subsonic turbulent boundary layer over a flat plate at 

Reθ = 1491 and M = 0.5). The hydrodynamic wall pressure 

fluctuations seem to show similar spectral characteristics 

of the near-wall turbulences for both internal and external 

turbulent boundary layers. It is also noticeable that the 

spectral profile of the wall pressure fluctuation is almost 

plateau at frequencies below the inertial subrange. It should 

be noted that the local wall pressure fluctuations by near-wall 

motions of turbulence, LSM, in particular leave ‘footprint’ 

of the energetic motions close to the wall. To correlate with 

acoustic sources, it is important to know the spatio-temporal 

scales of turbulence, based on their footprints on the wall. 

Φ(kz,kθ,f), the wavenumber frequency spectra of wall 

pressure p(z,θ,t) are defined by a Fourier transform of space-

time correlation functions,
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structures in the pipe are well depicted by the 
present computation. 
 
3.2 Validation of turbulence statistics 
 

The present LES solution is validated by 
comparing with the existing DNS solutions of 
Khoury et al.[14], who studied the 
characteristics of turbulent pipe flow in a 
smooth circular pipe of axial length 25R at 
  𝐷𝐷  53  . The inner-scaled mean velocity 
profile of the present calculation is compared in 
Fig. 2(a), and the three components of 
turbulence intensity, 𝑢𝑢  𝑟𝑟𝑟𝑟𝑟𝑟′ , 𝑢𝑢𝜃𝜃 𝑟𝑟𝑟𝑟𝑟𝑟

′  𝑢𝑢𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟′  
are compared in Fig. 2(b). Both comparisons 
indicate excellent agreement with DNS. Fig. 2(c) 
shows that a second-order turbulence statistics, 
turbulent shear stress is also closely compared 
with the DNS solution.  

A power spectral density of hydrodynamic 
wall pressure fluctuation (scaled with inner flow 
variable) is presented in Fig. 3(a), comparing 
with that of Gloerfelt and Berland[15] (a 
subsonic turbulent boundary layer over a flat 
plate at   𝜃𝜃   49  and M = 0.5). The 
hydrodynamic wall pressure fluctuations seem 
to show similar spectral characteristics of the 
near-wall turbulences for both internal and 
external turbulent boundary layers. It is also 
noticeable that the spectral profile of the wall 
pressure fluctuation is almost plateau at 
frequencies below the inertial subrange. It 
should be noted that the local wall pressure 
fluctuations by near-wall motions of turbulence, 
LSM, in particular leave „footprint‟ of the 
energetic motions close to the wall. To correlate 
with acoustic sources, it is important to know 
the spatio-temporal scales of turbulence, based 
on their footprints on the wall. Φ     𝜃𝜃   , the 
wavenumber frequency spectra of wall pressure 
p z θ    are defined by a Fourier transform of 
space-time correlation functions, 

 

 𝑝𝑝𝑝𝑝    𝑝𝑝 𝑧𝑧 𝜃𝜃 𝑡𝑡 𝑝𝑝 𝑧𝑧 + 𝜉𝜉 𝜃𝜃 + 𝜂𝜂 𝑡𝑡 + 𝜏𝜏 >   (9) 
 
Figure 3(b) shows the cross-spectra of wall 
pressure fluctuation along the flow axial (left) 
and azimuthal (right) directions. The x-axis 
shows the wavelength nondimensionalized by 
the pipe radius and y-axis indicates the 
frequency non-dimensionalized by the inner 
scaling. It is observed that there is a clear trend 
of    −    relation, showing a convection 
speed equal to 𝑈𝑈𝑐𝑐    8 𝑈𝑈∞. The wall pressure 
fluctuation of flow axial direction seems to be 
energetic in the region where the turbulent eddy 
length exceeds the pipe radius. In particular, the 
spectral contribution of wall pressure fluctuation 
is effective for which the length scale is larger 
than 2R, similar to LSM structures. As to the 
VLSM structure, a recent DNS study of Chin et 
al.[13] reported with a similar flow condition 
that the formation of VLSM structure was hard 
to be observed in low Reynolds number flow. In 
the wall pressure cross-spectra, the azimuthal 
direction shows rather a monotonic result in 
comparison with the flow axial direction. The 
spectral contribution in the half pipe perimeter 
(  5π ) is shown to be energetic than other 
regions for all frequencies. 
 
4. AEROACOUSTIC COMPUTATION OF 
TURBULENT PIPE FLOW 
 
4.1 LPCE computation with acoustic source 
DP/Dt field 
 

An elaborate methodology is used to compute 
the acoustic field of full-developed turbulent 
pipe flow at low Mach numbers. Once a fully-
developed turbulent pipe flow is developed with 
incompressible LES, the linearized perturbed 
compressible equation (LPCE) is calculated 
with acoustic source DP/Dt. In LPCE 
computation, a total derivative of the 
hydrodynamic pressure fluctuations, DP/Dt, is 
only considered as an explicit volumetric source 
field[7]. 

Two different computational domains are 
configured as in Fig. 4, to separate the 

Fig. 5. A shadow view of instantaneous 
acoustic source field, DP/Dt at a θ-constant 
plane in turbulent pipe flow at 𝑅𝑅𝑅𝑅𝜏𝜏   75. 
 

Fig. 4. Schematic figure of turbulent pipe flow 
noise prediction method. 
 

(9)

Figure 3(b) shows the cross-spectra of wall pressure 

fluctuation along the flow axial (left) and azimuthal 

(right) directions. The x-axis shows the wavelength 

nondimensionalized by the pipe radius and y-axis indicates 

the frequency nondimensionalized by the inner scaling. It is 

observed that there is a clear trend of kzR - ω+ relation, showing 

a convection speed equal to Uc = 0.8U∞. The wall pressure 

fluctuation of flow axial direction seems to be energetic 

in the region where the turbulent eddy length exceeds the 

pipe radius. In particular, the spectral contribution of wall 

pressure fluctuation is effective for which the length scale 

is larger than 2R, similar to LSM structures. As to the VLSM 

      

                                             (a)                                                                                           (b)                                                                                              (c)

Fig. 2. ��(a) Mean axial velocity U+ as a function of y+. circles: present LES at ReD = 5000; solid line: Khoury et al.[14] at ReD = 5300., (b) Turbulence in-
tensity u'+rms vs. y+; present LES(ReD = 5000): u'+z,rms(circle), u'+θ,rms(square), u'+r,rms(cross); Khoury et al.[14]: line (ReD = 5300), (c) turbulent shear stress 
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A fully-developed turbulent pipe flow is 
computed by incompressible large-eddy 
simulation for the friction Reynolds number 
(also known as Karman number),        
 𝑢𝑢   𝜈𝜈   75  (or   𝐷𝐷  5   ). For the 
computation of fully-developed turbulent pipe 
flow, a periodic boundary condition is to be used 
in the streamwise direction but one has to mind 
whether the computational domain is long 
enough to include the very large and largescale 
motions (called VLSM and LSM for short). 
These structures, initially observed in the 
experimental studies (Kim et al.[11] and 
Townsend[12]), are of 2-3R to 20R in length (R 
is the pipe radius) in the outer region of the 
turbulent boundary layer. Along the line, Chin et 
l.[13] conducted a DNS study at      170 
and 500 to investigate the effect of the 
streamwise periodic length on the convergence 
of turbulence statistics and concluded that a 
streamwise domain length of convergence can 
be achieved with 8πR. 

In the present study, we compute not only the 
turbulent pipe flow but also an acoustic field 

inside the pipe, i.e. generation and propagation 
of sound in the turbulent pipe flow. Therefore, 
the computational domain is set as 44R, large 
enough to analyze the flow and acoustics at the 
same time. The grid size is  2  ×  24  ×
 56  (about 45 millions) along r, θ , and z 
directions, respectively. The grid resolution in 
the axial direction is ∆𝑧𝑧 = 5.5 (or ∆z = 0.016), 
and along the azimuthal direction, the maximum 
grid spacing at the pipe wall is R∆𝜃𝜃  = 4.5 (or 
R∆θ = 0.013). The minimum and maximum 
wall-normal grid spacings are ∆𝑟𝑟  = 0.35 and 
2.8 (or ∆r = 0.001 and 0.008), respectively. A 
time step, ∆𝑡𝑡  = 0.017 (or ∆  = 0.0007) is 
used in the present LES, and the total simulation 
time is about 126R 𝑈𝑈∞. The computation was 
conducted with 600 processors of SUN B6275. 

Figure 1 shows the computed fully-developed 
turbulent pipe flow with the flooded contours of 
the instantaneous streamwise velocity at a θ-
constant plane and at a z-constant plane, 
respectively. A total of 30 contour levels are 
used to represent the magnitude of 𝑢𝑢  from 
0.004 (blue) to 1.4 (red), and the turbulent eddy 

(a)                            (b)                           
Fig. 3. (a) Power spectral density of wall pressure fluctuations. solid line: present LES; ▲: Gloerfelt 
and Berland (𝑅𝑅𝑅𝑅𝜃𝜃   49 )[15]; (b) cross-spectral contours of wavelength-frequency spectrum 
Φ 𝑘𝑘𝑧𝑧   f  (left) and Φ   𝑘𝑘𝜃𝜃 f  (right) of the wall pressure fluctuation. The dashed line in 
Φ 𝑘𝑘𝑧𝑧   f  indicates a major correlation stream, 𝑈𝑈𝑐𝑐    8𝑈𝑈∞. 

(a)                            (b)                          (c) 
Fig. 2. (a) Mean axial velocity 𝑈𝑈  as a function of 𝑦𝑦 . circles: present LES at 𝑅𝑅𝑅𝑅𝐷𝐷  5   ; 
solid line: Khoury et al.[14] at 𝑅𝑅𝑅𝑅𝐷𝐷  53  ., (b) Turbulence intensity 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟

′  vs. 𝑦𝑦 ; present 
LES( 𝑅𝑅𝑅𝑅𝐷𝐷  5    :  𝑢𝑢𝑧𝑧 𝑟𝑟𝑟𝑟𝑟𝑟

′ (circle), 𝑢𝑢𝜃𝜃 𝑟𝑟𝑟𝑟𝑟𝑟
′ (square), 𝑢𝑢𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟

′ (cross); Khoury et al.[14]: line 
(𝑅𝑅𝑅𝑅𝐷𝐷  53  ), (c) turbulent shear stress 𝑢𝑢𝑧𝑧′ 𝑢𝑢𝑟𝑟′        vs. 𝑦𝑦 ; present LES: circle; Khoury et al.[14]: 
line. 

 vs. y+; present LES: circle; Khoury et al.[14]: line.

          

                                                           (a)                                                                             (b)                                                                             (c)

Fig. 3. ��(a) Power spectral density of wall pressure fluctuations. solid line: present LES; ▲: Gloerfelt and Berland (Reθ = 1491)[15]; (b) cross-spectral 
contours of wavelength-frequency spectrum Φ(kz,0,f ) (left) and Φ(0,kθ,f ) (right) of the wall pressure fluctuation. The dashed line in Φ(kz,0,f ) 

indicates a major correlation stream, Uc = 0.8U∞.
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structure, a recent DNS study of Chin et al.[13] reported 

with a similar flow condition that the formation of  VLSM 

structure was hard to be observed in low Reynolds number 

flow. In the wall pressure cross-spectra, the azimuthal 

direction shows rather a monotonic result in comparison 

with the flow axial direction. The spectral contribution in the 

half pipe perimeter (0.5πD) is shown to be energetic than 

other regions for all frequencies.

4. ��Aeroacoustic Computation of Turbulent 
Pipe Flow

4.1 LPCE computation with acoustic source DP/Dt 
field

An elaborate methodology is used to compute the 

acoustic field of full-developed turbulent pipe flow at low 

Mach numbers. Once a fully-developed turbulent pipe 

flow is developed with incompressible LES, the linearized 

perturbed compressible equation (LPCE) is calculated 

with acoustic source DP/Dt. In LPCE computation, a total 

derivative of the hydrodynamic pressure fluctuations, DP/Dt, 

is only considered as an explicit volumetric source field[7].

Two different computational domains are configured 

as in Fig. 4, to separate the incompressible LES and 

LPCE computations. One important aspect in acoustic 

computation of the turbulent pipe flow is that a streamwise 

periodic boundary condition used for incompressible LES 

cannot be used for LPCE computation. It is to be noted 

that the acoustic solution is always superimposed with the 

turbulent flow fluctuations so that we cannot isolate acoustic 

field produced by turbulent fluctuations inside the pipe. For 

this, the computational grid for LPCE requires additional 

domains for source filtering, data collection, and wave 

annihilation.

The source filtering zone eliminates fluctuating acoustic 

sources such as velocities and hydrodynamic pressure. 

Sampling of temporal as well as spatial evolutions of acoustic 

waves are conducted in the acoustic monitoring zone. The 

acoustic annihilation zone at the side of the computational 

domain prevents unnecessary wave reflections; 50 grids 

points are stretched over 100D in the axial direction. With 

arrangement of different zones with different purposes, 

we can indeed acquire pure acoustic pressure fluctuations 

generated by fully-developed turbulent pipe flow at low 

Mach number.

The noise sources within the pipe are visualized in Fig. 5 

by the shadow view of DP/Dt attained by LES. It is interesting 

to observe that the DP/Dt field depicts quite closely the near-

wall turbulent structures, i.e. hairpin eddies and their merges 

structures. In fact, convection of these time-dependent near-

wall structures are the primary noise sources in the turbulent 

pipe flow. With these time-dependent convecting motions 

with the flow will compress or decompress the compressible 

flow inside the pipe. In fact, it was shown that the (DP/Dt)/P 

field represents indeed the (Dρ/Dt)/ρ field, i.e. a volumetric 

dilatation rate of the fluid[16].

4.2 Instantaneous acoustic fields and duct mode

The linearized perturbed compressible equation is 

solved for the prediction of sound in turbulent pipe flow, in 

conjunction with the incompressible LES. A shadow view 

of the compressibly-perturbed pressure fluctuations (p’) 

at a θ-constant plane is presented in Fig. 6 to visualize the 

instantaneous compression and expansion of the waves 

in the turbulent pipe flow. Nine consecutive images with a 

time interval of ∆t = 0.14D/U∞ show not only the near-field 

hydrodynamic pressure fluctuations by turbulences but 

also the spatial formation and propagation of the acoustic 

waves. One can clearly note that two noticeable acoustic 

waves propagate towards both ends of the computational 

domain inside the pipe and that the convection speed of 

the continuous field solutions corresponds to the speed of 

sound.

In a circular pipe, acoustic mode[17] is determined by a 

cut-off frequency of higher modes, fm,n = nm,nc/(2πR) where 

nm,n calculated from the Helmholtz equation denotes 

a number of nodal lines in the radial and azimuthal 

directions, respectively, with c being the speed of sound and 

R the pipe radius. For the computed acoustic field, acoustic 

mode is therefore checked to see the evanescence of the 

acoustic waves at the far field. The higher acoustic modes 

can be checked by phase angles at a cross-section of the 

pipe. Using the time evolution of acoustic pressure from a 

plane in the acoustic monitoring zone, the phase analysis 

Fig. 5. ��A shadow view of instantaneous acoustic source field, DP/Dt at 
a θ-constant plane in turbulent pipe flow at Reτ = 175.

Fig. 4. ��Schematic figure of turbulent pipe flow noise prediction method.
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is conducted with equally-distributed 30 points in both 

radial and azimuthal directions. As presented in Fig. 7, a 

non-zero phase angle is only visible at the frequency close 

to 1.55 in terms of inner variables, and it is indeed close to 

the analytical cut-off frequency of (1,0) mode, that is, 1.6. 

In other words, there is no clear tendency of an additional 

acoustic mode at higher frequency, implying that the (1,0) 

mode is only observed in the present study. The phase angles 

near the (1,0) cut-off frequency range from - 90 ~ 90 degrees, 

with maximum and minimum at the pipe circumference. 

This is consistent with a representative characteristic of the 

acoustic higher mode, known as the spiral wave motion. 

There is, however, no clear higher acoustic modes, implying 

that acoustic waves at higher frequencies are expected to 

be either quickly damped by decaying characteristics of the 

small-scale turbulences or evanescence of waves during 

transmission in the pipe.

4.3 Spectral characteristics of acoustic field in tur-
bulent pipe flow

A power spectral density of acoustic pressure computed 

by the present method is compared in Fig. 8 with the acoustic 

dipole source (marked by ▲) attained by Hu et al.[4], who 

conducted an incompressible DNS for a turbulent channel 

flow at Reτ = 180. The axial dipole source (S11) spectrum 

of Hu et al[4]. scaled by (Sp(f)Reτ) shows a good agreement 

with the present LES/LPCE acoustic result from low to 

mid-range frequencies (1 < fR/uτ < 10 or 0.04 < ω+ < 0.4). 

As pointed out by Hu et al.[4], the TBL noise generation at 

low Mach number (e.g. M < 0.1) is majorly attributed to the 

linear mode conversion from incident vorticity wave to the 

pressure wave near the solid boundary. This noise generation 

mechanism was initially mentioned by Herbert, Leehay and 

Fig. 7. ��Phase angle analysis. solid line: present LES; dashed line: analytic 
(1,0) duct mode frequency.

Fig. 8. ��Acoustic pressure power spectrum. solid line: present LES; ▲: axial 
dipole source (S11, Hu et al.[4]).

Fig. 6. ��Instantaneous snapshots of the compressibly-perturbed pressure fluctuation field p' at a θ-constant plane in the turbulent pipe flow at 	
ReD = 5000 (or Reτ = 175); ∆t = 0.14D/U∞.
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Haj-Hariri[18], similar to elastodynamics in terms of mode 

conversion from shear waves to dilatational waves. 

The constant decaying rate of f -8/5 in the power spectrum 

implicates a noise generation mechanism in turbulent pipe 

flow. It can also be interpreted in the context of dipole sound 

via vortex-scattering. For example, the constant decaying rate 

of f -2 of the trailing-edge noise in the power spectrum[19] is 

related to edge-scattering of the convecting turbulent eddies, 

to be more specific, the spanwise rollers (e.g. hairpin heads 

and their mergers). The far-field acoustic pressure is then 

estimated by  

9 

computed by the present method is compared in 
Fig. 8 with the acoustic dipole source (marked 
by ▲) attained by Hu et al.[4], who conducted 
an incompressible DNS for a turbulent channel 
flow at     = 180. The axial dipole source 
(S11) spectrum of Hu et al. scaled by (𝑆𝑆𝑝𝑝      ) 
shows a good agreement with the present 
LES/LPCE acoustic result 
from low to mid-range frequencies (   
fR 𝑢𝑢     or    4        4). As pointed 
out by Hu et al.[4], the TBL noise generation at 
low Mach number (e.g. M < 0.1) is majorly 
attributed to the linear mode conversion from 
incident vorticity wave to the pressure wave 
near the solid boundary. This noise generation 
mechanism was initially mentioned by Herbert, 
Leehay and Haj-Hariri[18], similar to 
elastodynamics in terms of mode conversion 
from shear waves to dilatational waves.  

The constant decaying rate of       in the 
power spectrum implicates a noise generation 
mechanism in turbulent pipe flow. It can also be 
interpreted in the context of dipole sound via 
vortex-scattering. For example, the constant 
decaying rate of   2 of the trailing-edge noise 
in the power spectrum[19] is related to edge-
scattering of the convecting turbulent eddies, to 
be more specific, the spanwise rollers (e.g. 
hairpin heads and their mergers). The far-field 
acoustic pressure is then estimated by   

 
𝑝𝑝𝑎𝑎′  ∝  𝜌𝜌∞𝑙𝑙   𝑈𝑈𝑐𝑐             (10) 

 
where l  represents the associated length-

scale (e.g. diameter of the spanwise roller), 𝑈𝑈𝑐𝑐 
corresponds to the eddy convection speed, and 
(  𝑈𝑈𝑐𝑐 ) is a vertical component of the Lamb 
acceleration vector, 𝐿⃗⃗𝐿    ⃗⃗⃗ × 𝑣⃗𝑣. Assuming that 
   is approximately constant regardless of l 
and with Taylor's hypothesis (l ∙ f ~ 𝑈𝑈𝑐𝑐 , it reads 
 

𝑝𝑝𝑎𝑎′  ∝    1               (11) 
 
and the acoustic power spectral density [𝑝𝑝𝑎𝑎′ ]2 
thereby decays as   2. 
The power spectrum of turbulent pipe flow 
noise exhibits a similar decaying rate,      . In 
this case, the spectral decaying rate is closely 
related to turbulent bursts of convecting 
longitudinal structures such as hairpin vortex 
and their merged structures (e.g. hairpin 
packets). The far-field acoustic pressure is then 
expressed as  

 
𝑝𝑝𝑎𝑎′  ∝  𝜌𝜌∞𝑙𝑙𝛽𝛽 

𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕            (12) 

 
where l  denotes the associated longitudinal 
length scale, β   , and (∂𝑢𝑢  𝜕𝜕𝜕𝜕) is the local 
rate of change of the streamwise velocity. 
Assuming that ( ∂𝑢𝑢  𝜕𝜕𝜕𝜕 ) is approximately 
constant regardless of l and with the Taylor's 
hypothesis, the acoustic pressure reads 
 

𝑝𝑝𝑎𝑎′  ∝    𝛽𝛽              (13)  
 

and thus [𝑝𝑝𝑎𝑎′ ]2 ∝    2𝛽𝛽. Note that in the present 
turbulent pipe flow case, β  4 5  and thus 
[𝑝𝑝𝑎𝑎′ ]2 ∝      . β being departed from 1 may 
be associated with the turbulent boundary layer 
characteristics. The measured external TBL 
noise spectrum[20] shows almost the same 
decaying rate.   

Acoustic estimation for the turbulent pipe 
flow is re-examined with the axial velocity 
fluctuation spectra presented in Fig. 9. If the 
sound is produced by the local rate of changes 
of the streamwise momentum, the velocity 
fluctuation power spectra, in particular, [𝑢𝑢 ′ ]2 
is expected to show the same decaying slopes 
across the turbulent boundary layer. The spectral 
decaying similarity of       can be found 
indeed in the spectra at 𝑦𝑦   15, 70, and 150, 
representing the layers from buffer layer, log-
law layer (mid), and log-law layer (upper), 
respectively.   

If the frequency is divided into three regimes, 
A (   4          , B (          3 , 
and C (  3        8  and with the Taylor's 
hypothesis used, the longitudinal wavenumbers, 
𝐴𝐴𝑘𝑘 (  6    𝑥𝑥    5 , 𝐵𝐵𝑘𝑘 (  5   𝑥𝑥  4 5 , 
and 𝐶𝐶𝑘𝑘 (4 5    𝑥𝑥   2  correspond to the 
frequency ranges A, B, and C, respectively. 
From this, it can be configured that the turbulent 
pipe flow noise is generated across the boundary 
layer but the long waves (  6   𝑥𝑥    5  are 
mostly generated in the buffer layer or below, 
while the short waves (4 5    𝑥𝑥   2  are in 
the upper logarithmic layer.  

 
5. CONCLUSIONS 
 

Aeroacoustic computation of a fully-
developed turbulent pipe flow at     = 175 and 
M = 0.1 was successfully conducted by an 
elaborate LES/LPCE hybrid computational 
methodology. The turbulent statistics within the 

(10)

where l represents the associated length-scale (e.g. 

diameter of the spanwise roller), Uc corresponds to the eddy 

convection speed, and (ωzUc) is a vertical component of the 

Lamb acceleration vector, 
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computed by the present method is compared in 
Fig. 8 with the acoustic dipole source (marked 
by ▲) attained by Hu et al.[4], who conducted 
an incompressible DNS for a turbulent channel 
flow at     = 180. The axial dipole source 
(S11) spectrum of Hu et al. scaled by (𝑆𝑆𝑝𝑝      ) 
shows a good agreement with the present 
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attributed to the linear mode conversion from 
incident vorticity wave to the pressure wave 
near the solid boundary. This noise generation 
mechanism was initially mentioned by Herbert, 
Leehay and Haj-Hariri[18], similar to 
elastodynamics in terms of mode conversion 
from shear waves to dilatational waves.  

The constant decaying rate of       in the 
power spectrum implicates a noise generation 
mechanism in turbulent pipe flow. It can also be 
interpreted in the context of dipole sound via 
vortex-scattering. For example, the constant 
decaying rate of   2 of the trailing-edge noise 
in the power spectrum[19] is related to edge-
scattering of the convecting turbulent eddies, to 
be more specific, the spanwise rollers (e.g. 
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acoustic pressure is then estimated by   
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𝑝𝑝𝑎𝑎′  ∝    1               (11) 
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ω+ < 0.1), B (0.1 < ω+ < 0.3), and C (0.3 < ω+ < 0.8) and with 
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5. Conclusions

Aeroacoustic computation of a fully-developed turbulent 
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Fig. 9. ��Power spectra of u'z at y+ = 15, 70, and 150; red line: acoustic decaying slope (f -8/5).
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pipe flow at Reτ = 175 and M = 0.1 was successfully 

conducted by an elaborate LES/LPCE hybrid computational 

methodology. The turbulent statistics within the pipe, i.e. 

inner-scaled mean velocity profile, three components of 

turbulence intensity, u'z,rms, u'θ,rms', u'r,rms' and turbulent shear 

stress are well compared with the existing DNS solutions. In 

regard to acoustic wave propagation in the pipe, a (1,0) higher 

duct mode was found by a phase angle analysis. A constant 

decaying rate of  f -8/5 in the acoustic power spectrum, from 

low to mid frequencies (0.04 < ω+ < 0.4) implicates a noise 

generation mechanism in turbulent pipe flow; turbulent 

pipe flow noise is majorly generated by turbulent bursts of 

correlated longitudinal structures such as hairpin vortex 

and their merged structures (or hairpin packets). The power 

spectra of the streamwise velocity fluctuations across the 

turbulent boundary layer indicate that the most intensive 

noise at ω+ < 0.1 is produced in the buffer layer with 

fluctuations of the longitudinal structures (kxR < 1.5).
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