• Title/Summary/Keyword: low-complexity hardware architecture

Search Result 86, Processing Time 0.023 seconds

$AB^2$ Semi-systolic Architecture over GF$GF(2^m)$ ($GF(2^m)$상에서 $AB^2$ 연산을 위한 세미시스톨릭 구조)

  • 이형목;전준철;유기영;김현성
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • In this contributions, we propose a new MSB(most significant bit) algorithm based on AOP(All One Polynomial) and two parallel semi-systolic architectures to computes $AB^2$over finite field $GF(2^m)$. The proposed architectures are based on standard basis and use the property of irreducible AOP(All One Polynomial) which is all coefficients of 1. The proposed parallel semi-systolic architecture(PSM) has the critical path of $D_{AND2^+}D_{XOR2}$ per cell and the latency of m+1. The modified parallel semi-systolic architecture(WPSM) has the critical path of $D_{XOR2}$ per cell and has the same latency with PSM. The proposed two architectures, PSM and MPSM, have a low latency and a small hardware complexity compared to the previous architectures. They can be used as a basic architecture for exponentiation, division, and inversion. Since the proposed architectures have regularity, modularity and concurrency, they are suitable for VLSI implementation. They can be used as a basic architecture for algorithms, such as the Diffie-Hellman key exchange scheme, the Digital Signature Algorithm(DSA), and the ElGamal encryption scheme which are needed exponentiation operation. The application of the algorithms can be used cryptosystem implementation based on elliptic curve.

A Design of LDPC Decoder for IEEE 802.11n Wireless LAN (IEEE 802.11n 무선 랜 표준용 LDPC 복호기 설계)

  • Jung, Sang-Hyeok;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.31-40
    • /
    • 2010
  • This paper describes a LDPC decoder for IEEE 802.11n wireless LAN standard. The designed processor supports parity check matrix for block length of 1,944 and code rate of 1/2 in IEEE 802.11n standard. To reduce hardware complexity, the min-sum algorithm and layered decoding architecture are adopted. A novel memory reduction technique suitable for min-sum algorithm was devised, and our design reduces memory size to 25% of conventional method. The LDPC decoder processor synthesized with a $0.35-{\mu}m$ CMOS cell library has 200,400 gates and memory of 19,400 bits, and the estimated throughput is about 135 Mbps at 80 MHz@2.5v. The designed processor is verified by FPGA implementation and BER evaluation to validate the usefulness as a LDPC decoder.

Efficient Scheduling Schemes for Low-Area Mixed-radix MDC FFT Processor (저면적 Mixed-radix MDC FFT 프로세서를 위한 효율적인 스케줄링 기법)

  • Jang, Jeong Keun;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.29-35
    • /
    • 2017
  • This paper presents a high-throughput area-efficient mixed-radix fast Fourier transform (FFT) processor using the efficient scheduling schemes. The proposed FFT processor can support 64, 128, 256, and 512-point FFTs for orthogonal frequency division multiplexing (OFDM) systems, and can achieve a high throughput using mixed-radix algorithm and eight-parallel multipath delay commutator (MDC) architecture. This paper proposes new scheduling schemes to reduce the size of read-only memories (ROMs) and complex constant multipliers without increasing delay elements and computation cycles; thus, reducing the hardware complexity further. The proposed mixed-radix MDC FFT processor is designed and implemented using the Samsung 65nm complementary metal-oxide semiconductor (CMOS) technology. The experimental result shows that the area of the proposed FFT processor is 0.36 mm2. Furthermore, the proposed processor can achieve high throughput rates of up to 2.64 GSample/s at 330 MHz.

An Input-Buffered Dual-Banyan Switch with Multiple Switching Fabrics Based on Multistage Interconnection Networks (다단계 상호 연결망 기반의 다중 스위치 구조를 갖는 입력 버퍼형 이중 반얀 스위치)

  • Park, Sung-Won;Lee, Chang-Bum
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.463-470
    • /
    • 2003
  • Many types of switching fabrics have been proposed for use in ATM networks. Multistage Interconnection Networks (MINs) constitute a large class of ATM switching systems that are widely used in today´s internetworking. One of the most veil-known types of multistage networks is the banyan network. The banyan network is attractive for its simple routing scheme and low hardware complexity, but its throughput is very limited due to internal blocking and output contention. In this paper, we propose an input-buffered dual-banyan switch model with multiple switching fabric between switch input and output to avoid internal and Head-of Line blocking. By performance analysis and simulation, we show that our model has a lower ceil delay and 96% throughput which is much better than other banyan-type switch architecture.

Design and Implementation of Hand Gesture Recognizer Based on Artificial Neural Network (인공신경망 기반 손동작 인식기의 설계 및 구현)

  • Kim, Minwoo;Jeong, Woojae;Cho, Jaechan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2018
  • In this paper, we propose a hand gesture recognizer using restricted coulomb energy (RCE) neural network, and present hardware implementation results for real-time learning and recognition. Since RCE-NN has a flexible network architecture and real-time learning process with low complexity, it is suitable for hand recognition applications. The 3D number dataset was created using an FPGA-based test platform and the designed hand gesture recognizer showed 98.8% recognition accuracy for the 3D number dataset. The proposed hand gesture recognizer is implemented in Intel-Altera cyclone IV FPGA and confirmed that it can be implemented with 26,702 logic elements and 258Kbit memory. In addition, real-time learning and recognition verification were performed at an operating frequency of 70MHz.

Low-Cost Elliptic Curve Cryptography Processor Based On Multi-Segment Multiplication (멀티 세그먼트 곱셈 기반 저비용 타원곡선 암호 프로세서)

  • LEE Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.15-26
    • /
    • 2005
  • In this paper, we propose an efficient $GF(2^m)$ multi-segment multiplier architecture and study its application to elliptic curve cryptography processors. The multi-segment based ECC datapath has a very small combinational multiplier to compute partial products, most of its internal data buses are word-sized, and it has only a single m bit multiplexer and a single m bit register. Hence, the resource requirements of the proposed ECC datapath can be minimized as the segment number increases and word-size is decreased. Hence, as compared to the ECC processor based on digit-serial multiplication, the proposed ECC datapath is more efficient in resource usage. The resource requirement of ECC Processor implementation depends not only on the number of basic hardware components but also on the complexity of interconnection among them. To show the realistic area efficiency of proposed ECC processors, we implemented both the ECC processors based on the proposed multi-segment multiplication and digit serial multiplication and compared their FPGA resource usages. The experimental results show that the Proposed multi-segment multiplication method allows to implement ECC coprocessors, requiring about half of FPGA resources as compared to digit serial multiplication.