• 제목/요약/키워드: low-complexity algorithms

검색결과 240건 처리시간 0.026초

A Variable Step-Size NLMS Algorithm with Low Complexity

  • Chung, Ik-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권3E호
    • /
    • pp.93-98
    • /
    • 2009
  • In this paper, we propose a new VSS-NLMS algorithm through a simple modification of the conventional NLMS algorithm, which leads to a low complexity algorithm with enhanced performance. The step size of the proposed algorithm becomes smaller as the error signal is getting orthogonal to the input vector. We also show that the proposed algorithm is an approximated normalized version of the KZ-algorithm and requires less computation than the KZ-algorithm. We carried out a performance comparison of the proposed algorithm with the conventional NLMS and other VSS algorithms using an adaptive channel equalization model. It is shown that the proposed algorithm presents good convergence characteristics under both stationary and non-stationary environments despites its low complexity.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

동적 스케일링에 기반한 낮은 복잡도의 2048 포인트 파이프라인 FFT 프로세서 (2048-point Low-Complexity Pipelined FFT Processor based on Dynamic Scaling)

  • 김지훈
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.697-702
    • /
    • 2021
  • 고속 푸리에 변환(Fast Fourier Transform, FFT)은 다양한 응용처에서 널리 사용되는 주요 신호처리 블록이다. 일반적으로 1024 포인트 이상의 긴 FFT 처리의 경우 높은 SQNR(Signal-to-Quantization Ratio)를 유지하면서도 낮은 하드웨어 복잡도의 구현이 매우 중요하다. 본 논문에서는 낮은 복잡도의 FFT 알고리즘과 간단한 동적스케일링 기법을 제시한다. 이를 통해 2048 포인트 FFT연산에 대해서 널리 알려진 radix-2 알고리즘에 비해 곱셉기의 수를 절반으로 줄일 수 있으며, 또한 twiddle factor를 저장하기 위해 필요한 테이블의 크기를 radix-2 및 radix-22 알고리즘에 비해 각각 35% 및 53%로 축소할 수 있다. 그리고 내부 데이터의 폭을 점진적으로 늘리지 않고서도 55dB 이상의 높은 SQNR을 달성하는 것을 확인하였다.

Computational Complexity Analysis of Cascade AOA Estimation Algorithm Based on FMCCA Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.91-98
    • /
    • 2022
  • In the next generation wireless communication system, the beamforming technique based on a massive antenna is one of core technologies for transmitting and receiving huge amounts of data, efficiently and accurately. For highly performed and highly reliable beamforming, it is required to accurately estimate the Angle of Arrival (AOA) for the desired signal incident to an antenna. Employing the massive antenna with a large number of elements, although the accuracy of the AOA estimation is enhanced, its computational complexity is dramatically increased so much that real-time communication is difficult. In order to improve this problem, AOA estimation algorithms based on the massive antenna with the low computational complexity have been actively studied. In this paper, we compute and analyze the computational complexity of the cascade AOA estimation algorithm based on the Flexible Massive Concentric Circular Array (FMCCA). In addition, its computational complexity is compared to conventional AOA estimation techniques such as the Multiple Signal Classification (MUSIC) algorithm with the high resolution and the Only Beamspace MUSIC (OBM) algorithm.

유한체상의 낮은 복잡도를 갖는 시스톨릭 몽고메리 곱셈 (Low Complexity Systolic Montgomery Multiplication over Finite Fields GF(2m))

  • 이건직
    • 디지털산업정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Galois field arithmetic is important in error correcting codes and public-key cryptography schemes. Hardware realization of these schemes requires an efficient implementation of Galois field arithmetic operations. Multiplication is the main finite field operation and designing efficient multiplier can clearly affect the performance of compute-intensive applications. Diverse algorithms and hardware architectures are presented in the literature for hardware realization of Galois field multiplication to acquire a reduction in time and area. This paper presents a low complexity semi-systolic multiplier to facilitate parallel processing by partitioning Montgomery modular multiplication (MMM) into two independent and identical units and two-level systolic computation scheme. Analytical results indicate that the proposed multiplier achieves lower area-time (AT) complexity compared to related multipliers. Moreover, the proposed method has regularity, concurrency, and modularity, and thus is well suited for VLSI implementation. It can be applied as a core circuit for multiplication and division/exponentiation.

Low-complexity de-mapping algorithms for 64-APSK signals

  • Bao, Junwei;Xu, Dazhuan;Zhang, Xiaofei;Luo, Hao
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.308-315
    • /
    • 2019
  • Due to its high spectrum efficiency, 64-amplitude phase-shift keying (64-APSK) is one of the primary technologies used in deep space communications and digital video broadcasting through satellite-second generation. However, 64-APSK suffers from considerable computational complexity because of the de-mapping method that it employs. In this study, a low-complexity de-mapping method for (4 + 12 + 20 + 28) 64-APSK is proposed in which we take full advantage of the symmetric characteristics of each symbol mapping. Moreover, we map the detected symbol to the first quadrant and then divide the region in this first quadrant into several partitions to simplify the formula. Theoretical analysis shows that the proposed method requires no operation of exponents and logarithms and involves only multiplication, addition, subtraction, and judgment. Simulation results validate that the time consumption is dramatically decreased with limited degradation of bit error rate performance.

New Min-sum LDPC Decoding Algorithm Using SNR-Considered Adaptive Scaling Factors

  • Jung, Yongmin;Jung, Yunho;Lee, Seongjoo;Kim, Jaeseok
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.591-598
    • /
    • 2014
  • This paper proposes a new min-sum algorithm for low-density parity-check decoding. In this paper, we first define the negative and positive effects of the received signal-to-noise ratio (SNR) in the min-sum decoding algorithm. To improve the performance of error correction by considering the negative and positive effects of the received SNR, the proposed algorithm applies adaptive scaling factors not only to extrinsic information but also to a received log-likelihood ratio. We also propose a combined variable and check node architecture to realize the proposed algorithm with low complexity. The simulation results show that the proposed algorithm achieves up to 0.4 dB coding gain with low complexity compared to existing min-sum-based algorithms.

Sparse Index Multiple Access for Multi-Carrier Systems with Precoding

  • Choi, Jinho
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.439-445
    • /
    • 2016
  • In this paper, we consider subcarrier-index modulation (SIM) for precoded orthogonal frequency division multiplexing (OFDM) with a few activated subcarriers per user and its generalization to multi-carrier multiple access systems. The resulting multiple access is called sparse index multiple access (SIMA). SIMA can be considered as a combination of multi-carrier code division multiple access (MC-CDMA) and SIM. Thus, SIMA is able to exploit a path diversity gain by (random) spreading over multiple carriers as MC-CDMA. To detect multiple users' signals, a low-complexity detection method is proposed by exploiting the notion of compressive sensing (CS). The derived low-complexity detection method is based on the orthogonal matching pursuit (OMP) algorithm, which is one of greedy algorithms used to estimate sparse signals in CS. From simulation results, we can observe that SIMA can perform better than MC-CDMA when the ratio of the number of users to the number of multi-carrier is low.

State-of-charge Estimation for Lithium-ion Battery using a Combined Method

  • Li, Guidan;Peng, Kai;Li, Bin
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.129-136
    • /
    • 2018
  • An accurate state-of-charge (SOC) estimation ensures the reliable and efficient operation of a lithium-ion battery management system. On the basis of a combined electrochemical model, this study adopts the forgetting factor least squares algorithm to identify battery parameters and eliminate the influence of test conditions. Then, it implements online SOC estimation with high accuracy and low run time by utilizing the low computational complexity of the unscented Kalman filter (UKF) and the rapid convergence of a particle filter (PF). The PF algorithm is adopted to decrease convergence time when the initial error is large; otherwise, the UKF algorithm is used to approximate the actual SOC with low computational complexity. The effect of the number of sampling particles in the PF is also evaluated. Finally, experimental results are used to verify the superiority of the combined method over other individual algorithms.