• Title/Summary/Keyword: low- and intermediate-level radioactive disposal facility

Search Result 63, Processing Time 0.023 seconds

Preliminary Post-closure Safety Assessment of Disposal System for Disused Sealed Radioactive Source (폐밀봉선원 처분시스템 예비 폐쇄후 안전성평가)

  • Lee, Seunghee;Kim, Juyoul
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.33-48
    • /
    • 2017
  • An optimum disposal plan of disused sealed radioactive sources (DSRSs) should be established to ensure long-term disposal safety at the low- and intermediate-level radioactive waste (LILW) disposal facility in Gyeongju. In this study, an optimum disposal system was suggested and preliminary post-closure safety assessment was performed. The DSRSs disposal system was composed of a rock cavern and near surface disposal facilities at the Gyeongju LILW disposal facility. The assessment was conducted using GoldSim program, and probabilistic assessment and sensitivity analysis were implemented to evaluate the uncertainties in the input parameters of natural barriers. Deterministic and probabilistic calculations indicated that the maximum dose was below the regulatory limits ($0.1mSvyr^{-1}$ for the normal scenario, $1mSvyr^{-1}$ for the well scenario). It was concluded that the DSRSs disposal system would maintain environmental safety over a long-time. Moreover, the partition coefficient of Np in host rock, Darcy velocity in host rock, and density of the host rock were the most sensitive parameters in predicting exposure dose in the safety assessment.

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Safety Assessment of Near Surface Disposal Facility for Low- and Intermediate-Level Radioactive Waste (LILW) through Multiphase-Fluid Simulations Based on Various Scenarios (다양한 시나리오 기반 유체거동 수치모사를 통한 중·저준위 방사성 폐기물 표층처분시설 안전성 평가)

  • Jeong, Jina;Kown, Mijin;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.131-147
    • /
    • 2018
  • In the present study, the safety of the near surface disposal facility for low- and intermediate-level radioactive waste (LILW) is examined based on the fluid-flow simulation model. The effects of the structural design and hydrological properties of the disposal system are quantitatively evaluated by estimating the flux of infiltrated water at the boundary of the structure. Additionally, the safety margins of the disposal system, especially for the cover layer and vault, are determined by applying the various scenarios with consideration of possible facility designs and precipitation conditions. The overall results suggest that the disposal system used in this study is sufficiently suitable for the safe operation of the facility. In addition, it is confirmed that the soundness of both the cover layer and the vault have great impact on the safety of the facility. Especially, as shown in the vault degradation scenario, capability of the concrete barrier of the vault make more positive contribution on the safe operation of the facility compared to that of the cover layer.

A Conceptual Design on Performance Test Facility of Disposal Cover for the Near Surface Disposal of Low and Intermediate Level Radioactive Waste (중.저준위 방사성폐기물 천층처분을 위한 처분덮개의 성능실증 시험시설 개념설계)

  • 이찬구;박세문;김창락;염유선;이은용
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.245-254
    • /
    • 2001
  • The experimental study on disposal cover through the performance test facility offers reliability in the safety of near surface disposal of low and intermediate level radioactive waste. To ensure the long-term safety of the repository, the impermeability, integrity, resistance to degradation and ease of maintenance might be considered as the basic performance requirement of the disposal cover. considering the difficulties to meet these performance requirement by using single layer, the disposal cover design which is composed of top layer, middle drainage layer and bottom low permeability layer is schemed for the test facility. The water balance of the cover was evaluated by using HELP code. For the long-term monitoring of the soil moisture content and matric potential, TDR probes and tensiometers will be installed in 6 test cells. Each test cell is dimensioned 3$\times$3$\times$3.3m.

  • PDF

A Case Study of SFR Disposal Facility in Sweden to Derive the Total Disposable Amount of Radioactive Waste Containing Cellulose in Low and Intermediate Level Radioactive Waste Disposal Facility in Gyeongju (경주 중저준위방폐물 처분시설 내 셀룰로오스 함유 방폐물 처분가능 총량 도출을 위한 스웨덴 SFR 처분시설 사례 분석)

  • JaeChul Ha;MyungGoo Kang;SeHo Choi
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.501-508
    • /
    • 2023
  • There are various factors that have a negative impact on safety over a long period of time after the closure of a radioactive waste disposal facility. In particular, it is important to limit substances that accelerate radionuclide migration while inhibiting adsorption between radionuclides and the subsurface medium. Through this study, a method for deriving a quantitative criteria evaluation method is proposed for cellulose among materials that accelerate the movement of these radionuclides after closure of the disposal facility. Since Sweden's SKB is representative worldwide for preparing criteria for cellulose in disposal facilities, it analyzed Sweden's acceptance criteria method and presented a method that can be applied domestically. The decomposition characteristics of cellulose and the adsorption and dissolution characteristics of ISA among degradation products were reviewed, and quantitative analysis of cement materials that create a high pH environment favorable for cellulose decomposition was also included. In addition, the total amount of the finally disposable cellulose material can be derived by using the volume information of the waste containing the cellulose material. Through this methodology for calculating the total amount of cellulose, it is expected that subsequent studies will be conducted to secure data reflecting the environmental conditions of radioactive waste disposal facilities in Korea. In addition, it is expected to be utilized as a good method to evaluate the impact of other complexing agents other than cellulose and to suggest the amount of disposal.

Study on the Well Scenario of the LILW Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설의 우물 이용 시나리오를 적용한 안전평가 연구에 대한 고찰)

  • Jeong, Mi-Seon;Cheong, Jae-Yeol;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.63-72
    • /
    • 2015
  • The low and intermediate-level radioactive waste generated in Korea is disposed of at Wolsong Disposal Facility. For the safety of a disposal facility, it must be assessed by considering some abnormal scenarios including human intrusion as well as those by natural phenomena. The human intrusion scenario is a scenario that an incognizant man of the disposal facility will be occurred by the drilling. In this paper, the well usage scenario was classified into the human intrusion event as the probability of the well drilling is very low during the man's lifecycle and then was assessed by using conservative assumptions. This scenario was assessed using the dilution factor of contaminants released from a disposal facility and then it was introduced the applied methodology in this study. The assessed scenario using this methodology is satisfied the regulatory limits.

Improvement of Safety Approach for Accidents During Operation of LILW Disposal Facility : Application for Operational Safety Assessment of the Near-surface LILW Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설의 운영 중 사고에 대한 평가체계 개선 : 한국의 중·저준위 방사성폐기물 표층처분시설의 운영 중 안전성평가 적용사례)

  • Kim, Hyun-Joo;Kim, Minseong;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classification logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper.

Licensing Review Scheme for Low and Intermediate Level Radioactive Waste Disposal Facility ($\cdot$저준위방사성폐기물처분시설 인허가심사 방안)

  • 전제근;정승영;장재권;이관희;박원재;박상훈
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.283-289
    • /
    • 2003
  • In order to establish the licensing review system for LILW disposal facility, we have studied the licensing review structure of oversea's countries, including United State, Japan, and France. We have also reviewed the domestic licensing review structure and the current status of development of safety standards for LILW management. A licensing review for LILW disposal facility can be implemented in 5-6 steps according to Atomic Energy Act. It is estimated to take 32 months for the CP and the OL review for LILW disposal facility referencing to the licensing review practice of the nuclear power plant. To date, a total of 15 MOST Notices have been developed to apply to the safe management of radwaste and 5 more MOST Notices will be developed by 2005.

  • PDF

The Assessment of Exposure Dose of Radiation Workers for Decommissioning Waste in the Radioactive Waste Inspection Building of Low and Intermediate-Level Radioactive Waste Disposal Facility (경주 중·저준위방사성폐기물 처분시설의 방폐물검사건물에서 해체 방사성폐기물 대상 방사선작업종사자의 피폭선량 평가 및 작업조건 도출)

  • Kim, Rin-Ah;Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.317-325
    • /
    • 2020
  • The Korea Radioactive Waste Agency plans to expand the storage capacity of radioactive waste by constructing a radioactive waste inspecting building to solve the problem of the lack of inspection space and drum-handling space in the radioactive waste receipt and storage building for the first-stage disposal facility. In this study, the exposure doses of radiation workers that handle new disposal containers for decommissioning waste in the storage areas of the radioactive waste inspecting building were calculated using the Monte Carlo N-particle transport code. The annual collective dose was calculated as a total of 84.8 man-mSv for 304 new disposal containers and an estimated annual 306 working hours for the radiation work. When the 304 new disposal containers (small/medium type) were stored in the storage areas, it was found that 25 radiation workers should be involved in acceptance/disposal inspection, and the estimated exposure dose per worker was calculated as an average annual value of 3.39 mSv. When the radiation workers handle the small containers in high-radiation dose areas, the small containers should be shielded further by increasing the concrete liner thickness to improve the work efficiency and radiation safety of the radiation workers. The results of this study will be useful in establishing the optimal radiation working conditions for radiation workers using the source term and characteristics of decommissioning waste based on actual measurements.

Statistical Approach for Derivation of Quantitative Acceptance Criteria for Radioactive Wastes to Near Surface Disposal Facility

  • Park Jin Beak;Park Joo Wan;Lee Eun Yong;Kim Chang Lak
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.387-398
    • /
    • 2003
  • For reference human intrusion scenarios constructed in previous study, a probabilistic safety assessment to derive the radionuclide concentration limits for the low- and intermediate- level radioactive waste disposal facility is conducted. Statistical approach by the Latin Hypercube Sampling method is introduced and new assumptions about the disposal facility system are examined and discussed. In our previous study of deterministic approach, the post construction scenarios appeared as most limiting scenario to derive the radionuclide concentration limits. Whereas, in this statistical approach, the post drilling and the post construction scenarios are mutually competing for the scenario selection according to which radionuclides are more important in safety assessment context. Introduction of new assumption shows that the post drilling scenario can play an important role as the limiting scenario instead of the post-construction scenario. When we compare the concentration limits between the previous and this study, concentrations of radionuclides such as Nb-94, Cs-137 and alpha-emitting radionuclides show elevated values than the case of the previous study. Remaining radionuclides such as Sr-90, Tc-99 I-129, Ni-59 and Ni-63 show lower values than the case of the previous study.