• 제목/요약/키워드: low wind

검색결과 1,597건 처리시간 0.028초

Assessment of ASCE 7-10 for wind effects on low-rise wood frame buildings with database-assisted design methodology

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • 제27권3호
    • /
    • pp.163-173
    • /
    • 2018
  • The design wind pressure for low-rise buildings in the ASCE 7-10 is defined by procedures that are categorized into the Main Wind Force-Resisting System (MWFRS) and the Components and Cladding (C&C). Some of these procedures were originally developed based on steel portal frames of industrial buildings, while the residential structures are a completely different structural system, most of which are designed as low-rise light-frame wood constructions. The purpose of this study is to discuss the rationality (or irrationality) of the extension of the wind loads calculated by the ASCE 7-10 to the light-frame wood residential buildings that represent the most vulnerable structures under extreme wind conditions. To serve this purpose, the same approach as used in the development of Chapter 28 of the ASCE 7-10 that envelops peak responses is adopted in the present study. Database-assisted design (DAD) methodology is used by applying the dynamic wind loads from Louisiana State University (LSU) database on a typical residential building model to assess the applicability of the standard by comparing the induced responses. Rather than the postulated critical member demands on the industrial building such as the bending moments at the knee, the maximum values at the critical points for wood frame buildings under wind loads are used as indicators for the comparison. Then, the critical members are identified through these indicators in terms of the displacement or the uplift force at connections and roof envelope. As a result, some situations for each of the ASCE 7 procedures yielding unconservative wind loads on the typical low-rise residential building are identified.

3MW 풍력발전시스템 출력성능평가에 관한 연구 (The Power Performance Testing for 3MW Wind turbine System)

  • 고석환;장문석;박종포;이윤섭
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.19-26
    • /
    • 2011
  • We are carried out power performance testing for 3MW wind turbine system at Je-ju wind turbine testing Site and analyzed measured data which was stored through monitoring system. In this paper, we described the power performance testing results and analyzed an uncertainty of measured data sets. The power curve with measured power data is closely coincide with designed power curve except for the low wind speed sections(4m/s~7m/s) and the annual energy production which is given Ray leigh distribution was included with 1.5~5.9% of uncertainty in the wind speed region as 4~11m/s. Although the deviation of curve between measured power and designed power is high, the difference of annual energy production is low in the low wind speed region.

Wind tunnel modeling of roof pressure and turbulence effects on the TTU test building

  • Bienkiewicz, Bogusz;Ham, Hee J.
    • Wind and Structures
    • /
    • 제6권2호
    • /
    • pp.91-106
    • /
    • 2003
  • The paper presents the results of 1:50 geometrical scale laboratory modeling of wind-induced point pressure on the roof of the Texas Tech University (TTU) test building. The nominal (prevalent at the TTU site) wind and two bounding (low and high turbulence) flows were simulated in a boundary-layer wind tunnel at Colorado State University. The results showed significant increase in the pressure peak and standard deviation with an increase in the flow turbulence. It was concluded that the roof mid-plane pressure sensitivity to the turbulence intensity was the cause of the previously reported field-laboratory mismatch of the fluctuating pressure, for wind normal and $30^{\circ}$-off normal to the building ridge. In addition, it was concluded that the cornering wind mismatch in the roof corner/edge regions could not be solely attributed to the wind-azimuth-independent discrepancy between the turbulence intensity of the approach field and laboratory flows.

원형방풍팬스 후면에 있는 저층건물의 풍압특성 (The Characteristic of Wind Pressure of Low-rise Building Located Behind a Circle Wind Fence)

  • 전종길;유장열;유기표;김영문
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.102-109
    • /
    • 2006
  • The effects of wind fence on the pressure characteristics around low-rise building model were investigated experimentally. Flow characteristics of turbulences behind wind fence were measured using hot-wire anemometer. The wind fence characterize by varying the porosity of 0 %, 40 % and the distances from the wind fence from 1 H to 6 H with maintaining the uniform flow velocity of 6 m/s. We investigated the overall characterization of the low-rise building by measuring pressure seventy four on model. The effects of porosity fences varied with the porosity of the fence and measurement locations(1H-6H). The 0% porosity proved to be effective for the protection area of 4H to 6H, but the 40% porosity proved to be effective for the protection area of 1H to 6H. The low-rise building of front face was found to be best wind fence for decreasing the mean, maximum and minimum pressure fluctuation.

  • PDF

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.

Spectral density functions of wind pressures on various low building roof geometries

  • Kumar, K. Suresh;Stathopoulos, T.
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.203-223
    • /
    • 1998
  • This paper describes in detail the features of an extensive study on Spectral Density Functions (SDF's) of wind pressures acting on several low building roof geometries carried out in a boundary layer wind tunnel. Various spectral characteristics of wind pressures on roofs with emphasis on derivation of suitable analytical representation of spectra and determination of characteristic spectral shapes are shown. Standard spectral shapes associated with various zones of each roof and their parameters are provided. The established spectral parameters can be used to generate synthetic spectra adequate for the simulation of wind pressure fluctuations on building surfaces in a generic fashion.

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

NREL 5 MW 풍력발전기의 기본 제어기에 대한 특성 고찰 (Investigation on Characteristics of the Baseline Controller for NREL 5 MW Wind Turbine)

  • 김종화;문석준;신윤호;원문철
    • 풍력에너지저널
    • /
    • 제3권2호
    • /
    • pp.34-41
    • /
    • 2012
  • The paper is focusing on investigating the control characteristics of the baseline controller of 5 MW wind turbine provided by NREL(National Renewable Energy Laboratory). The baseline controller consist of two control logics, a maximum power tracking control below the rated wind speed and a constant power control above the rated wind speed. In the low wind speed, the mean generator power for changing the turbulent intensity and the optimal constant is studied through numerical simulations using FAST program. On the other hand, the constant power control logic and the constant control logic are compared in the high wind speed. It is confirmed that optimal constant is closely related to the turbulent intensity in low wind speed region and the constant torque control has better performance than the constant power control with respect to mechanical load in high wind speed region.

Strong wind climatic zones in South Africa

  • Kruger, A.C.;Goliger, A.M.;Retief, J.V.;Sekele, S.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.37-55
    • /
    • 2010
  • In this paper South Africa is divided into strong wind climate zones, which indicate the main sources of annual maximum wind gusts. By the analysis of wind gust data of 94 weather stations, which had continuous climate time series of 10 years or longer, six sources, or strong-wind producing mechanisms, could be identified and zoned accordingly. The two primary causes of strong wind gusts are thunderstorm activity and extratropical low pressure systems, which are associated with the passage of cold fronts over the southern African subcontinent. Over the eastern and central interior of South Africa annual maximum wind gusts are usually caused by thunderstorm gust fronts during summer, while in the western and southern interior extratropical cyclones play the most dominant role. Along the coast and adjacent interior annual extreme gusts are usually caused by extratropical cyclones. Four secondary sources of strong winds are the ridging of the quasi-stationary Atlantic and Indian Ocean high pressure systems over the subcontinent, surface troughs to the west in the interior with strong ridging from the east, convergence from the interior towards isolated low pressure systems or deep coastal low pressure systems, and deep surface troughs on the West Coast.

A low-cost expandable multi-channel pressure system for wind tunnels

  • Moustafa, Aboutabikh;Ahmed, Elshaer;Haitham, Aboshosha
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.297-307
    • /
    • 2022
  • Over the past few decades, the use of wind tunnels has been increasing as a result of the rapid growth of cities and the urge to build taller and non-typical structures. While the accuracy of a wind tunnel study on a tall building requires several aspects, the precise extraction of wind pressure plays a significant role in a successful pressure test. In this research study, a low-cost expandable synchronous multi-pressure sensing system (SMPSS) was developed and validated at Ryerson University's wind tunnel (RU-WT) using electronically scanning pressure sensors for wind tunnel tests. The pressure system consists of an expandable 128 pressure sensors connected to a compact data acquisition and a host workstation. The developed system was examined and validated to be used for tall buildings by comparing mean, root mean square (RMS), and power spectral density (PSD) for the base moments coefficients with the available data from the literature. In addition, the system was examined for evaluating the mean and RMS pressure distribution on a standard low-rise building and were found to be in good agreement with the validation data.