• Title/Summary/Keyword: low water-cement ratio

Search Result 202, Processing Time 0.028 seconds

Application of Artificial Neural Networks for Prediction of the Flow and Strength of Controlled Low Strength Material (CLSM의 플로우 및 일축압축강도 예측을 위한 인공신경망 적용)

  • Lim, Jong-Goo;Kim, Yeon-Joong;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • The characteristics of flow and strength of CLSM depend on the combination ratio including the fly ash, pond ash, cement, water quantity and etc. However, it is very difficult to draw the mechanism about the flow, strength and the mixing ratio of each components. Therefore, the method of calculation drawing the flow about the component ratio of CLSM and compression strength value is needed for the valid practical use of CLSM. To verify the efficiency of artificial neural network, new data which were not used for establishing the model were predicted and compared with the results of laboratory tests. In this research, it was used to evaluate the learning efficiency of the artificial neural network model and the prediction ability by changing the node number of hidden layer, learning rate, momentum, target system error and hidden layer. By using the results, the optimized artificial neural network model which is suitable for a flow and compressive strength estimate of CLSM was determined.

Service Life Variation Considering Increasing Initial Chloride Content and Characteristics of Mix Proportions and Design Parameters (초기 염화물량의 증가와 배합 및 설계 변수 특성을 고려한 콘크리트 내구수명의 변동성)

  • Park, Sun-Kyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.236-245
    • /
    • 2021
  • It is very important for structure designer to understand the service life variation since a wide range of service life is evaluated with changing exposure conditions and design parameters. Recently, for zero-carbon, waste plastic has been used for fuel for clinker production and this yields increase in chloride content in cement. This study is for evaluation of changing service life in the concrete with increasing initial chloride content due to usage of plastic-SRF(Solid Refuse Fuel) considering various exposure conditions and design parameters. For this, 4 levels of initial chloride content were assumed, and the service life was assessed using LIFE 365 program considering various environmental conditions including 3 levels of surface chloride content. As for analysis parameters, critical/initial chloride content, blast furnace slag powder replacement ratio, W/B(Water to Binder) ratio, cover depth, and unit mass for binder are adopted. Service life decreases with increasing initial chloride content and a significant reduction of service life is not evaluated permitting up to 1,000ppm of initial chloride content. With increasing slag replacement ratio, a longer service life can be secured since blast furnace slag powder has the effect of reducing the diffusion of external chloride ions and fixing the free chloride. It is thought that increasing initial chloride content up to European standard is helpful for enhancing sustainability and reducing carbon emission. Though the reduction in service life due to an increase in the initial chloride content is not significant in slag-concrete with low surface chloride content, careful consideration for mixing design should be paid for the exposure environment with high surface chloride content.

Autogenous Shrinkage of High-Performance Concrete Containing Mineral Admixture (광물질 혼화재를 함유한 고성능 콘크리트의 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Yong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.19-31
    • /
    • 2007
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio and containing fly ash and blast furnace slag. Internal humidity change and shrinkage strain were about 10%, 10%, 7%, 11%, 11% and $320{\times}10^{-6}$, $270{\times}10^{-6}$, $231{\times}10^{-6}$, $371{\times}10^{-6}$, $350{\times}10^{-6}$ respectively on OPC30, O30F10, O30F20, O30G40, O30G50 and from the results, fly ash made humidity change and strain decrease but slag increase comparing with ordinary portland cement. Considering only relation internal humidity and shrinkage by self-desiccation, humidity change and shrinkage represented the strong linear relation regardless of mineral admixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.

Studies on the Production and Property of Light Weight Concrete (경량(輕量)콘크리트의 제조(製造)와 그 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Seong Wan;Kang, Sin Up;Cho, Seong Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.310-323
    • /
    • 1983
  • To study the effect of foaming agent on the production and property of light weight concrete, the tests of compressive, tensile, bending strengths and absorption rates of mortar were done under the different mixing ratio with J, A and D foaming agents. The results obtained were summarized as follows : 1. The strengths were decreased in richer mixing ratio and more addition of foaming agent. The decrease of strengths was the greatest at the level of 0.75% of foaming agent. The decreasing rate of strengths was in order of J, A and D foaming agent. 2. At the mixing ratio of 1:1, ${\sigma}_{28}$ and 0.75% of foaming agent, the compressive strength was decreased up to 34.9% by D, 47.8% by A and 86.8% by J foaming agent, respectively, the tensile strength was decreased up to 14.8% by D, 20.2% by A and 77.9% by J foaming agent, respectively, bending strength was decreased up to 19.9% by D, 35.0% by A and 79.1% by J foaming agent, respectively. The decrease of compressive strength was more severe than that of tensile and bending strengths. 3. The absorption rates were increased in poorer mixing ratio and more addition of foaming agent. The absorption rate was significantly higher at the early stage of immersed water. The absorption rate was in order of J, A and D foaming agent. 4. The decrease of strengths was inevitable in cement-mortar with foaming agent, but the cement mortar with foaming agent has such the properties of the light-weight, lnsulation, Keeping-warmth, sound proof and fire-proof that if could be utilized to the constructions which need low strengths.

  • PDF

Strength Development and Durability of High-Strength High-Volume GGBFS Concrete (고강도 고함량 고로슬래그 콘크리트의 강도 발현 특성 및 내구성)

  • Kim, Joo-Hyung;Jeong, Ji-Yong;Jang, Seung-Yup;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.261-267
    • /
    • 2015
  • To develop high-strength high-volume ground granulated blast-furnace slag (GGBFS) concrete, this study investigated the characteristics of strength development and durability of concrete with the water-to-binder ratio of 23% and the GGBFS replacement ratio of up to 65%. The results show that the compressive strength of GGBFS blended concrete is lower than that of ordinary Portland cement (OPC) concrete up to 3-day age, but the becomes higher after 7-day age. Together with strength increase, the pore structure becomes tighter, and thus the resistance to chloride ion penetration increases. Therefore, the GGBFS blended concrete has high resistance to freezing and thawing without additional air-entraining, and high resistance to carbonation despite low amount of calcium hydroxide ($Ca(OH)_2$). On the other hand, if silica fume (SF) is blended with GGBFS, the strength becomes lower than that of the concrete blended with GGBFS only, and the resistance to chloride ion penetration deceases. Therefore, it needs further studies on the reaction of SF in high-strength high-volume GGBFS concrete.

Evaluation on Durability of High Performance Concrete with Expansive Additive and Shrinkage Reducing Admixture (팽창재와 수축저감제를 사용한 고성능 콘크리트의 내구성 평가)

  • Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.205-211
    • /
    • 2006
  • The objective of this study was to evaluate the durability of low shrinkage high performance concrete(LSHPC), which was combined with expansive additives and shrinkage reducing admixtures. We tested for not only LSHPC but also high performance concrete(HPC) and normal concrete(NC) to be compared with the durability of LSHPC. HPC was made in the same water-binder ratio of LSHPC without expansive additives and shrinkage reducing admixture. As a result, it was found that LSHPC had higher compressive and tensile strength than that of HPC. LSHPC showed more excellent performance than HPC and NC in the case of resistance to chloride ion penetration and resistance to carbonation and also showed nearly 100 durability factor in the freeze-thawing test with 500 cycles. From the examination about the watertightness and the pore distribution, it was found that the durability of LSHPC was improved because its hardened cement paste is organized closer. So we can conclude that when LSHPC is applied to structures in field, it is possible to reduce the shrinkage and crack in concrete and improve the durability.

Compressive Strength and Chloride Permeability of High Strength Concrete according to the Variety of Mineral Admixtures (광물질혼화재 종류별 고강도콘크리트의 압축강도 및 촉진 염소이온침투 특성)

  • Moon Han-Young;Kim Byoung-Kwon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.407-414
    • /
    • 2004
  • The purpose of this study is to evaluate the ability to resist chloride ions penetration of the concrete structure under marine environment in south-east asia especially. In this study, high strength concrete(HSC) with various combination of ordinary portland cement(OPC), blast-furnace slag(SG) and silica fume(SF) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. And to investigate the fundamental properties and the resistance of chloride penetration of various HSC, setting time, slump flow, compressive strength, void and ASTM C 1202 test were conducted. Test results show that the compressive strength of HSC is similar regardless of SG replacement ratio and total charge passed of chloride is the smallest at 40% replacement of SG. The compressive strength of G4FS HSC is, besides, outstandingly high at early age compare with other HSC, but the compressive strength of G4F HSC, which is vary according to curing temperature and condition, most high at the age after 7 days. Total passed charge of HSC get larger in the order G4FS

A Study on Construction Methods of Roller Compacted Concrete Pavement for Bike Roads (자전거도로용 롤러 전압 콘크리트 포장의 시공 방안 연구)

  • Lee, Chang-Ho;Kim, Young-Kyu;Kang, Jae-Gyu;Park, Cheol-Woo;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.103-114
    • /
    • 2011
  • Usage of bicycle has been supported the universal reduction of energy consumption and $CO_2$. For the same purpose, new constructions for long length bike roads are planned in Korea. Recently, laboratory tests of physical properties and resistance against environmental loading about optimum mix design of roller compacted concrete, that have advantages of high structural performance by cement hydration and aggregate interlocking, simple construction procedure and low construction cost, are performed for the effective construction of new bike roads. However, properties of roller compacted concrete had different results between laboratory and field tests since it had different compaction method. Also, construction method of roller compacted concrete are not defined for the application of bike roads since it had different demand performance such as thin pavement thickness, low strength and etc with road pavements. Thus, in this experimental research was launched to evaluate the core properties, visual inspection, compaction ratio, water content, thickness reduction rate of roller compaction, skid resistance and roughness by experimental construction about variable mix proportion and compaction method based on laboratory test results. And construction method of roller compacted concrete pavement were suggested for the application of bike roads.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder (알칼리 활성 슬래그 결합재를 이용한 자기충전 콘크리트의 기초 연구)

  • Song, Keum-Il;Shin, Gyeong-Sik;Gong, Min-Ho;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.657-665
    • /
    • 2013
  • The purpose of this study is the basic research of self-compacting concrete using Alkali-Activated Slag (AAS) binder in order to emphasize the durability of structures and facilitate casting the fresh concrete in field. The AAS binder emitted low carbon dioxide ($CO_2$) is eco friendly material of new concept because AAS products not only emit little $CO_2$ during production but also reuse the industrial by-products such as ground granulated blast-furnace slag (GGBS) of the steel mill. Until now, almost of domestic and foreign research are using Ordinary Portland Cement (OPC) for self-compacting concrete, and also, nonexistent research about AAS. The self-compacting concrete must get the performance of flowability, segregation resistance, filling and passing ability. Nine concrete mixes were prepared with the main parameter of unit amount of binder (400, 500, 600 $kg/m^3$) and 3 types of water-binder (W/B) ratio. The results of test were that fresh concretes were satisfied with flowability, segregation resistance, and filling ability of JSCE. But the passing ability was not meet the criteria of EFNARC because of higher viscosity of AAS paste than OPC. This high viscosity of AAS paste enables the manufacturing of self compacting concrete, segregation of which does not occur without the using of viscosity agent. It is necessary that the development of high fluidity AAS binders of higher strength and the study of better passing ability of AAS concrete mixes in order to use self compacting AAS concrete in field.