DOI QR코드

DOI QR Code

Strength Development and Durability of High-Strength High-Volume GGBFS Concrete

고강도 고함량 고로슬래그 콘크리트의 강도 발현 특성 및 내구성

  • Kim, Joo-Hyung (High-tech Construction Materials Center, Korea Conformity laboratories) ;
  • Jeong, Ji-Yong (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Jang, Seung-Yup (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Jung, Sang-Hwa (High-tech Construction Materials Center, Korea Conformity laboratories) ;
  • Kim, Sung-Il (High-speed Railroad Systems Research Center, Korea Railroad Research Institute)
  • 김주형 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 정지용 (한국철도기술연구원 고속철도연구본부) ;
  • 장승엽 (한국철도기술연구원 고속철도연구본부) ;
  • 정상화 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 김성일 (한국철도기술연구원 고속철도연구본부)
  • Received : 2015.09.20
  • Accepted : 2015.09.27
  • Published : 2015.09.30

Abstract

To develop high-strength high-volume ground granulated blast-furnace slag (GGBFS) concrete, this study investigated the characteristics of strength development and durability of concrete with the water-to-binder ratio of 23% and the GGBFS replacement ratio of up to 65%. The results show that the compressive strength of GGBFS blended concrete is lower than that of ordinary Portland cement (OPC) concrete up to 3-day age, but the becomes higher after 7-day age. Together with strength increase, the pore structure becomes tighter, and thus the resistance to chloride ion penetration increases. Therefore, the GGBFS blended concrete has high resistance to freezing and thawing without additional air-entraining, and high resistance to carbonation despite low amount of calcium hydroxide ($Ca(OH)_2$). On the other hand, if silica fume (SF) is blended with GGBFS, the strength becomes lower than that of the concrete blended with GGBFS only, and the resistance to chloride ion penetration deceases. Therefore, it needs further studies on the reaction of SF in high-strength high-volume GGBFS concrete.

본 연구에서는 고강도 고함량 고로슬래그 콘크리트의 개발을 위해 고로슬래그 미분말(GGBFS)을 65%까지 치환한 물-결합재비 23%의 고강도 콘크리트를 대상으로 압축강도 발현 특성과 내구성을 분석하였다. 연구 결과에 따르면 GGBFS를 65% 혼입한 고강도 콘크리트의 압축강도는 재령 3일까지는 보통 포틀랜드 시멘트(OPC)만을 사용한 콘크리트보다 낮지만 재령 7일 이후부터 더 높아지는 것으로 나타났으며, 강도의 증가와 함께 공극구조가 더 치밀해짐으로써 염소이온 투과 저항성이 커지고, 이로인해 별도의 공기연행 없이도 우수한 동결융해 저항성을 확보할 수 있으며, 수산화칼슘의 감소에도 불구하고 우수한 탄산화 저항성을 나타냈다. 반면 실리카퓸(SF)을 GGBFS와 함께 혼입하면 GGBFS만 혼입한 경우보다 강도는 낮아지고 염소이온 투과 저항성이 낮아지는 것으로 나타났다. 따라서 향후 고강도 고함량 고로슬래그 콘크리트에서의 SF의 반응에 대한 심층적인 연구가 요망된다.

Keywords

References

  1. Cho, C.G., Lim, H.J., Yang, K.H., Song, J.K., Lee, B.Y. (2012). Basic mixing and mechanical tests on high ductile fiber reinforced cementless composites, Journal of the Korea Concrete institute, 24(2), 121-127 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.2.121
  2. Choi, S.W., Ryu, D.H., Kim, H.S, Kim, G.Y. (2013). Hydration properties of low carbon type low heat blended cement, Journal of the Korea Institute of Building Construction, 13(3), 218-226 [in Korean]. https://doi.org/10.5345/JKIBC.2013.13.3.218
  3. Chong, W., Changhui, Y., Fang, L., Chaojun, W., Xincheng, P. (2012). Preparation of ultra-high performance concrete with common technology and materials, Cement and Concrete Composites, 34, 538-544. https://doi.org/10.1016/j.cemconcomp.2011.11.005
  4. Gengying, L., Xiaohua, Z. (2003). Properties of concrete incorporating fly ash and ground granulated blast-furnace slag, Cement and Concrete Composites, 25, 293-299. https://doi.org/10.1016/S0958-9465(02)00058-6
  5. Halit, Y., Mert, Y., Huseyin, Y., Serdar, A., Selcuk, T. (2010). Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cement and Concrete Composites, 32, 639-648. https://doi.org/10.1016/j.cemconcomp.2010.07.005
  6. Hester, D., Mcnally, C., Richardson, M.G. (2005). Study of influence of slag alkali level on the alkali-silica reactivity of slag concrete, Construction and Building Materials, 19(9), 661-665. https://doi.org/10.1016/j.conbuildmat.2005.02.016
  7. Hogan, F.J., Meusel, J.W. (1981). Evaluation for durability and strength development of a ground granulated blast furnace slag, Cement, Concrete and Aggregate, 3(1), 40-52. https://doi.org/10.1520/CCA10201J
  8. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., Kim, S.I. (2015 a). Effects of cement replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes, Journal of the Korea Concrete Institute, 27(2), 115-125 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.2.115
  9. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., Kim, S.I. (2015 b). Effects of limestone powder and silica fume on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement mortars, Journal of the Korea Concrete Institute, 27(2), 127-136 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.2.127
  10. KS F 2405. (2010). Standard test method for compressive strength of concrete, KSA.
  11. KS F 2456. (2013). Standard test method for concrete to rapid freezing and thawing, KSA.
  12. KS F 2563. (2009). Ground granulated blast-furnace slag for use in concrete, KSA.
  13. KS F 2567. (2009). Silica fume for use in concrete, KSA.
  14. KS F 2584. (2010). Standard test method for accelerated carbonation of concrete, KSA.
  15. KS L 5201. (2013). Portland cement, KSA.
  16. Leng, F., Feng, N., Lu, X. (2000). An experiment study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete, Cement and Concrete Research, 30, 989-992. https://doi.org/10.1016/S0008-8846(00)00250-7
  17. Madani, H., Bagheri, A., Parhizkar, T. (2012). The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement, Cement and Concrete Research, 42, 1563-1570. https://doi.org/10.1016/j.cemconres.2012.09.004
  18. Mehta, P.K., Monteiro, P.J.M. (2004). Concrete, microstructure, properties, and materials, 3rd ed., McGraw-Hill, New York, 659.
  19. Mindess, S., Young, J.F., David, D. (2003). Concrete, 2nd ed., Prentice Hall, New Jersey, 644.
  20. NT Build 492 (1991). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from nonsteady-state migration experiments, Nordtest method.
  21. Ryu, D.W., Kim, W.J., Yang, W.H., Park, D.C. (2012 a). An experimental study on the carbonation and drying shrinkage of concrete using high volumes of ground granulated blast-furnace slag, Journal of the Korea Institute of Building Construction, 12(4), 393-400 [in Korean]. https://doi.org/10.5345/JKIBC.2012.12.4.393
  22. Ryu, D.W., Kim, W.J., Yang, W.H., You, J.H., Ko, J.W. (2012b). An experimental study on the freezing-thawing and chloride resistance of concrete using high volumes of GGBS, Journal of the Korea Institute of Building Construction, 12(3), 315-322 [in Korean]. https://doi.org/10.5345/JKIBC.2012.12.3.315

Cited by

  1. Structural Capacity of Water Channel Fabricated of Blast Furnace Slag Concrete vol.4, pp.4, 2016, https://doi.org/10.14190/JRCR.2016.4.4.446
  2. Evaluating Strength Development and Durability of High-Strength Concrete with 60% of Ground-Granulated Blast Furnace Slag vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.307