• Title/Summary/Keyword: low water potential

Search Result 817, Processing Time 0.033 seconds

Effects of Water Stress by PEG on Growth and Physiological Traits in Rice Seedlings

  • Choi, Weon-Young;Kang, Si-Yong;Park, Hong-Kyu;Kim, Sang-Su;Lee, Ki-Sang;Lee, Kyu-Seong;Shin, Hyun-Tak;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.112-117
    • /
    • 2000
  • This study was conducted to evaluate the drought tolerance of Japonica and Indica rice cultivars during germinating and seedling stages by using the polyethylene glycol (PEG) solution. Each 5 cultivars of Japonica and Indica were cultured from 14 days after seeding(DAS) to 21 DAS using the PEG solution in a moderate water potential (-0.63 MPa). The lengths of radicle and plumule during the germinating stage were inhibitied by the PEG treatment to about 50% and 85%, respectively. The application of PEG to the seedling of two rice types caused to inhibit the plant height and leaf age about 23 % and 10%, respectively. Shoot and root dry weights by PEG treatment were inhibited more severely in Japonica than those in Indica. The difference on delaying of leaf area expansion between both rice types was not found with treatment of PEG, while the leaf color was increased in both Japonica and Indica by 19.9% and 9.2%, respectively. The average photosynthetic ability was inhibited more in Japonica to 36.0% than did Indica to 27.9%. The stomatal conductance was severely affected by PEG treatment, and the degree was varied in both rice types, ranged with 80-85% in Japonica and 29.3-81.6% in Indica. These results indicate there is little relationship between seed germination and seedling growth under the stress of low water potential.

  • PDF

Oceanographic Characteristics of the Jspan Sea Proper Water II. The Japan Sea Proper Water and Chimney (동해고유수의 해양학적 특성 II. 동해고유수와 chimney)

  • Choi, Yong-Kyu;Cho, Kyu-Dae;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.121-139
    • /
    • 1995
  • Based on the Results of Marine Meteorological and Oceanographical Observations (1966 -1987), the phenomenon of chimney is found as a candidate for the formation of the Japan Sea Proper Water (JSPW). The chimney phenomenon occurs twelve times Inuring 1966∼ 1987. The water types in the chimney denoting the deep convection are similar to those of the JSPW 0∼ 1℃ in potential temperature, 34.0∼34.1 ‰ in salinity and 68∼80 cl/t in potential thermosteric anomaly from the sea surface to the deep layer. The static stabilities in the chimney stations are unstable or neutral. This indicates that the winter time convection occurs. The JSPW sunken from the surface layer of chimney in winter spreads out under the Tsushima Warm Current area, following the isosteric surface of about 76 cl/t in Potential thermosteric anomaly. The formation of the deep water of the JSPW is mainly affected by the cooling of the sea surface than the evaporation of winds because the temperature and the salinity on the isoteric surface of about 76 cl/t in potential thermosteric anomaly ate cold and low The phenomenon of chimney occurred in here and there of the area in the north of 40" 30'N, west of 138" E. This suggests that the deep water of the JSPW is formed not in a limited area but probably in the overall region of the northern open ocean.

  • PDF

Molecular Simulation of Influence of Surface Energy on Water Lubrication (표면 에너지가 물 윤활 현상에 미치는 영향에 대한 분자시뮬레이션 연구)

  • Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.273-277
    • /
    • 2023
  • This paper presents a molecular dynamics simulation-based numerical investigation of the influence of surface energy on water lubrication. Models composed of a crystalline substrate, half cylindrical tip, and cluster of water molecules are prepared for a tribological-characteristic evaluation. To determine the effect of surface energy on lubrication, the surface energy between the substrate and water molecules as well as that between the tip and water molecules are controlled by changing the interatomic potential parameters. Simulations are conducted to investigate the indentation and sliding processes. Three different normal forces are applied to the system by controlling the indentation depth to examine the influence of normal force on the lubrication of the system. The simulation results reveal that the solid surface's surface energy and normal force significantly affect the behavior of the water molecules and lubrication characteristics. The lubrication characteristics of the water molecules deteriorate with the increasing magnitude of the normal force. At a low surface energy, the water molecules are readily squeezed out of the interface under a load, thus increasing the frictional force. Contrarily, a moderate surface energy prevents expulsion of the water molecules due to squeezing, resulting in a low frictional force. At a high surface energy, although squeezing of the water molecules is restricted, similar to the case of moderate surface energy, dragging occurs at the soil surface-water molecule interface, and the frictional force increases.

Recruitment Potential of Cyanobacterial Harmful Algae (Genus Aphanizomenon) in the Winter Season in Boryeong Reservoir, Korea: Link to Water-level Drawdown (동계 보령호에서 수위 강하와 연계된 유해 남조류 Aphanizomenon sp.의 재입 잠재성)

  • Shin, Jae-Ki;Jeon, Gyeonghye;Kim, Youngsung;Kim, Mi-Kyung;Kim, Nan-Young;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.3
    • /
    • pp.337-354
    • /
    • 2017
  • Cyanobacteria Aphanizomenon population is widely distributed in the world, and well known as harmful algae by producing toxins and off-flavor materials, thus belonging to one of the taxa that became more interested in the field of limnoecology. In this study, the frequency, intensity, and duration of Aphanizomenon occurrence were increased with the abnormal drawdown of water level in the winter in Boryeong Reservoir, and the spatial and temporal characteristics of them are compared with each other in the perspective of hydrometeorology (1998 to 2017) and limnology (2010 to 2017). In Korea, Aphanizomenon flourished mainly in high temperature, and the appearance in the low temperature was rare in total five times. The harmful cyanobacteria Aphanizomenon was observed in the low temperature (December to February) in Boryeong Reservoir from 2014, and then reached a maximum value of $2,160cells\;mL^{-1}$ in January 2017. In addition, the period exceeding $1,000cells\;mL^{-1}$ at this time was more than 3 months. This was simultaneously associated with abnormal water level fluctuation in the low temperature ($<10^{\circ}C$). The large drawdown of water level in the winter season has the potential to promote or amplify the germination and development of harmful algae. Also, subsequent water quality and ecological impacts(e.g., algal toxins and off-flavor substances) need to be considered carefully.

A Study on Improvement of PWR Steam Generator Water Level Control at Low Power Operation (저출력시 원전 증기발생기 수위제어 개선 연구)

  • Yun, Jae-Hee;Han, Jai-Bok;Joon Lyou
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.420-424
    • /
    • 1994
  • This paper presents an improved water level control scheme for Pressurized Water Reactor(PWR) Steam Generator(S/G) at the low power operation and transient states. To reduce fluctuations of the water level by the swell and shrink phenomena, the scheme adds feedforward terms considering S/G pressure and the feedwater temperature into the conventional proportional-integral feedback controller. The simulation results using the Compact Nuclear Simulator show that smaller level errors and much faster settling time than those of the conventional scheme can be obtained. The proposed algorithm is easily implementable and has a potential for the real applications.

  • PDF

A Case Study of Characterization of AOC Formation

  • Kim, Ji-Hoon;Hwang, Hyeon-Uk;Kim, Young-Ju
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.261-267
    • /
    • 2010
  • The variation of assimilable organic carbon(AOC) concentration at each condition of ozonation was investigated using a model water and drinking water resource. AOC concentration of model raw water and drinking water resource tended to increase at low ozone dose. The maximum AOC concentration was detected when the residual ozone begin to be measured. Also, the AOC concentration increase at pH 8 compared to both pH 6 and 7 while that for pH 9 decreased rapidly. The removal characteristics of trihalomethane formation potential(THMFP) by ozonation was also investigated. Unlike the trend of AOC, the THMFP concentration never increased by ozonation but decreased even at low ozone dosage. From these results, the ozone dosage would be effective to simultaneously decrease both AOC and THMFP.

Effect of the Sewage and Wastewater Plant Effluent on the Algal Growth Potential in the Nakdong River Basin (낙동강 수계 하.폐수 처리시설의 방류수가 조류 성장 잠재력에 미치는 영향)

  • Seo,Jeong-Gwan;Lee,Jae-Jeong;Yang,Sang-Yong;Jeong,Ik-Gyo
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • Effect of the effluent of the sewage and wastewater plants on the algal growth was investigated from the 19 plants located in the Nakdong river basin. Most of the samples showed high values of the algal growth potential (AGP) when they were mixed with natural river water at 20% of final concentration. At 20% of the mixing ratio, the mixed effluents of sewage and wastewater showed 3.5 and 1.8 times higher AGP than those of the natural river water. The higher AGP values are attributable to the high contents of phosphorus and ammonium in the effluent. The mixing ratio of effluents of the discharge/river flow was highest in the Kumho River (42.8%) followed by the middle of Nakdong River (22.7%), Kam Stream (13.9%), Byungsung Stream (13.3%), Yangsan Stream (7.9%), and Young River (5.4%). Comparison of the trophic state of the effluents with natural river water indicated that the effluents showed higher trophic values than natural water. Concentrations of total phosphorus, total nitrogen and conductivity in the effluents were 12.3, 4.9 and 5.3 times higher than the those found in natural river water respectively. The AGP values were highly related with the trophicity of the water especially on the concentrations of phosphate and ammonium. Toxicities of the treated sewage water, wastewater and livestock waste water tested by the luminescent bacteria, Vibrio fischerii were generally low.

Evaluation of the Stability of Oxidation-Reduced Potential (ORP) Using the Filter of the Alkaline Water (알칼리 환원수 필터의 산화환원전위 안정화 평가)

  • Nam, Sangyep;Kwon, Yunjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.129-135
    • /
    • 2016
  • This study is about ionic water generator filter Recently, a lot of people feel deep interest in health and drinking water. Evaluation of the stability of oxidation-reduced potential (ORP) using the filter of the alkaline water. This study utilizes the three filter of activated carbon, UF, carbon block in alkaline reduced water equipment. Passing the water to the filter is evaluated that the OPR values are stability in accordance with the change of the volume in the bucket. Alkaline reduced water equipment is a system that has the function of making the water reduction. This system is the values of the human body beneficial minerals and ORP are made in the functional water has a very low value than general water. Which has passed through the filter the water in the water negative ions and positive ions through the electrolytic. After electrolysis, the cathode side by water, including $Ca^+$, $K^+$, $Mg^+$, $Na^+$ water gets Alkaline Reduced Water containing the minerals beneficial to the human body. A positive electrode side is made of the organic materials that have an anion such as chlorine (Cl), phosphorus (P), sulfur(S). This experiment uses the Alkaline Reduced Water to adjust the magnitude of the voltage of the electrolysis in the Alkaline Reduced Water. That is 1st step(pH8) 2nd step (pH8.5) 3th step (pH9), 4th step (pH9.5) in the Alkaline Reduced Water and -1st step (pH6.0), -2nd step (pH5.0) used as the acidic oxidation water. When the water passes through the three filter in this system was evaluated whether the ORP values are changed and stabilized. When about 100 liters of water passing through the filter was confirmed that the ORP values are stability and evaluation.

Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water

  • Choi, Yonkyu;Park, Hyeon;Lee, Manho;Lee, Gun-Soo;Choi, Young-june
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.501-512
    • /
    • 2019
  • The seasonal effects on the biostability of drinking water were investigated by comparing the seasonal variation of assimilable organic carbon (AOC) in full-scale water treatment process and adsorption of AOC by three filling materials in lab-scale column test. In full-scale, pre-chlorination and ozonation significantly increase $AOC_{P17\;(Pseudomonas\;fluorescens\;P17)}$ and $AOC_{NOX\;(Aquaspirillum\;sp.\;NOX)}$, respectively. AOC formation by oxidation could increase with temperature, but the increased AOC could affect the biostability of the following processes more significantly in winter than in warm seasons due to the low biodegradation in the pipes and the processes at low temperature. $AOC_{P17}$ was mainly removed by coagulation-sedimentation process, especially in cold season. Rapid filtration could effectively remove AOC only during warm seasons by primarily biodegradation, but biological activated carbon filtration could remove AOC in all seasons by biodegradation during warm season and by adsorption and bio-regeneration during cold season. The adsorption by granular activated carbon and anthracite showed inverse relationship with water temperature. The advanced treatment can contribute to enhance the biostability in the distribution system by reducing AOC formation potential and helping to maintain stable residual chlorine after post-chlorination.

Recent strategies for improving the quality of meat products

  • Seonmin Lee;Kyung Jo;Seul-Ki-Chan Jeong;Hayeon Jeon;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.895-911
    • /
    • 2023
  • Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.