• Title/Summary/Keyword: low voltage cables

Search Result 54, Processing Time 0.021 seconds

Development of Cable for Towed Array Sonar System (예인 음탐기용 케이블 개발)

  • Yang, Seung-Yun;Kim, Jung-Suk;Kim, Chul-Min;Lee, Jin-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.559-566
    • /
    • 2016
  • Cables for Towed Array Sonar System(TASS) were developed. In order to verify the performance of cables, environmental and operational conditions as well as functional requirements were investigated during design stage. Double armored high and low voltage integrated cable for towed body and two kinds of cables, armored and light weight power and optic hybrid cables for towed array sensor system were developed by modeling and simulation. Customized manufacturing process and test method, such as foam extrusion and dynamic fatigue test were applied to this development. In conclusion, underwater towed hybrid cable with high tensile strength and compact structure were developed.

Pressure drop characteristics of concentric spiral corrugation cryostats for a HTS power cable considering core surface roughness

  • Youngjun Choi;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, interest in renewable energy such as solar and wind power has increased as an alternative to fossil fuels. Renewable energy sources such as large wind farms require long-distance power transmission because they are located inland or offshore, far from the city where power is required. High-Temperature Superconducting (HTS) power cables have more than 5 times the transmission capacity and less than one-tenth the transmission loss compared to the existing cables of the same size, enabling large-capacity transmission at low voltage. For commercialization of HTS power cables, unmanned operation and long-distance cooling technology of several kilometers is essential, and pressure drop characteristic is important. The cryostat's spiral corrugation tube is easier to bend, but unlike the round tube, the pressure drop cannot be calculated using the Moody chart. In addition, it is more difficult to predict the pressure drop characteristics due to the irregular surface roughness of the binder wound around the cable core. In this paper, a CFD model of a spiral corrugation tube with a core was designed by referring to the water experiments from previous studies. In the four cases geometry, when the surface roughness of the core was 10mm, most errors were 15% and the maximum errors were 23%. These results will be used as a reference for the design of long-distance HTS power cables.

The Development of the Low Power Consumption and Long Life Battery using a Galvanic Series (저전력형 반영구적인 갈바니 전원장치 개발)

  • Bae, Jeong-Hyo;Kim, Dae-Kyeong;Ha, Tae-Hyun;Lee, Hyun-Goo;Choi, Sang-Bong;Jeong, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3201-3204
    • /
    • 2000
  • In general, analog tester or strip chart recorder have been used to measure the corrosion potential of structures such as gas pipelines, oil pipelines, hot water pipelines, power cables etc. Recently, automatic digital data logger substitutes for these manual equipment because using these manual equipments are tedious and time consuming. However, digital data logger also has a shortcoming, that is, short measuring time because of the short lifetime of batteries. Therefore, we developed a long lifetime and low power loss battery taking advantage of galvanic series. In this paper, the results of development for power generator using two metals and DC/DC converter in order to obtain enough voltage for the operation of digital data logger. DC/DC converter operates with 0.5[V]. Its output voltage is 3.5[V] and output current is from 60[mAh] to 1,200[mAh].

  • PDF

Analysis of Diagnosis and Very Low Frequency Experiment to Detect of Fault on 22.9kV Class Cable (22.9kV급 케이블 결함 검출을 위한 초저주파 실험 및 현장 진단 분석)

  • Kim, Young-Seok;Kim, Taek-Hee;Kim, Chong-Min;Shong, Kil-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1780-1785
    • /
    • 2016
  • This paper presents few case studies of state diagnosis of XLPE cables using very low frequency techniques. The power cables of 22.9kV which have installation fault were assessed using VLF technique in addition to other techniques like insulation resistance and DC voltage withstand test. From the experimental results, The dielectric loss($tan{\delta}$) values of degradation of the cable(joint, knife, needle) at $U_0$ were 5.839, 5.526 and 6.251, respectively and all values were "further study advised". VLF PD measurement was also found defective portion. These method was effective in defect to fault in the degradation of the cable. However, the breakdown did not occur in the degradation of the cable because of properties of XLPE insulation. Few case studies of using VLF $tan{\delta}$ diagnosis for fault are measured and analyzed. The $tan{\delta}$ values at $U_0$ were "further study advised" or "action required".

Evaluation on the Properties of the Current Limiting Part for Fault-Current-Limiting Type HTS Cables (사고전류 제한형 고온 초전도케이블의 한류부 특성평가)

  • Kim, Tae-Min;Hong, Gong-Hyun;Han, Byung-Sung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.191-195
    • /
    • 2015
  • Inside the existing superconducting cables, the superconducting wire carries a loss-free current, and the cable former (the stranded copper wire) bypasses the fault current to prevent damage and loss of the superconducting cable when the fault current is applied. The fault-current-limiting-type superconducting cable proposed in this paper usually carries a steady current; but in a fault state, the cable generates self-resistance that makes the fault current lower than a certain width. That is, the superconducting cable that transmitted only a low voltage and a large capacity power repetitively limits the fault current, as does a superconducting current limiter. To complete this structure, it is essential to investigate the mutual resistance relationship between the superconducting wires after applying a fault current. Therefore, in this paper, one kinds of superconducting wires (a wire without a stabilization layer) were connected parallel 4 tapes, respectively; and after applying a fault current, the current, voltage, resistance and thermal stability of the HTS thin-film wires were examined.

A Study on the Temperature Analysis for Cable in Overload and Short of Low Voltage Wiring using Electro-Thermal FEA (전계-열계 유한요소해석을 이용한 저압 배선선로의 과부하 및 단락사고 발생시 전선의 온도해석에 관한 연구)

  • Oh, Hong-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.91-96
    • /
    • 2004
  • Overloading of electrical equipment results in excessive currents. As the heat developed in the cables is proportional to square of the current, they get overheated. The insulation on cables is generally made of materials which are damaged easily by excessive temperature. They may therefore lose their insulating properties and lead to short circuits. Since many insulating materials are combustible, they may even catch fire if the temperature rises to their ignition temperature. In this paper, we have simulated the thermal analysis for cable according to the value of current in a overload and a short with the cable of the L's company product(600 V, VV : Four Core) using the electro-thermal finite element method(Flux2D).

  • PDF

Comparison and Calculation Method on the Separation Between ICT and Power Cabling Considering EMC (EMC를 고려한 ICT배선과 전력배선 이격거리 기준의 비교검토 및 산정방식)

  • Yeom, Jin-Geun;Jeong, Seung-Hyun;Byeon, Cheol-Gyun;Lee, Ju-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.91-96
    • /
    • 2014
  • The requirements for separation between ICT cables and power cables depend upon the electromagnetic immunity of the ICT cable, the construction of the power cable, the quantity of, and type of electrical circuits and the presence of dividers etc. We studied and reviewed the regulations and standards relevant for requirements of this separation in domestic and foreign. And then we would like to suggest the method of separation calculation between ICT and power cabling taking the EMC into consideration.

Fault Detection of Low Voltage Cable using Time-Frequency Correlation in SSTDR (SSTDR에서 시간-주파수 상관을 활용한 저압 케이블의 고장 검출)

  • Jeon, Jeong-Chay;Kim, Taek-Hee;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.498-504
    • /
    • 2015
  • This paper proposed an Spread Spectrum Time Domain Reflectometry (SSTDR) using time-frequency correlation analysis in order to have more accurate fault determination and location detection than classical SSTDR despite increased signal attenuation due to the long distance to cable fault location. The proposed method was validated through comparison with classical SSTDR methods in open- and short-circuit fault detection experiments of low-voltage power cables. The experimental results showed that the proposed method can detect correlation coefficients at fault locations accurately despite reflected signal attenuation so that cable faults can be detected more accurately and clearly in comparison to existing methods.

Supervisory Protection System of Microgird Interconnected to Low Voltage Grids (저압계통 연계형 마이크로그리드의 보호감시 시스템)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • This paper mainly proposes the protective coordination scheme of the microgrid system. The microgrid protection is identical to the conventional protection system separating the normal part and contingency part to reduce damage when the contingency occur at power cables, facilities. But they are different in the protection type. The conventional protection system only considers unidirectional current. However the microgrid protection should be considered not only unidirectional current but also backfeed current because various microsources and loads are installed in the microgrid system. In case the contingency occurs in microsource, when microgrid is interconnected to grid, the protection system should be configured to not separate microgrid from grid before the microsource is isolated to microgrid. And in case of fault occur in power system, the microsources should not isolated to microgrid before the static switch at PCC is tripped to separate from power system. Considering these characteristic of microgird, this paper proposes the protective coordination scheme of microgrid and implemented the on-line real time monitoring system. Especially in case the microgrid is connected to low voltage distribution system with 220/380V voltage level, the proposed protection method with power IT technology can solve the problems when the existing protective devices only applied to the microgrid system.

Implementation of Power Cable Diagnostic Simulator using VLF (VLF를 활용한 전력케이블 진단 시뮬레이터 구현)

  • Kim, Kuk;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.593-602
    • /
    • 2020
  • Power cables installed in domestic factories or underground can cause accidents depending on the manufacturing process, installation, and environmental conditions during use. When an accident occurs in a power cable, it can cause enormous economic loss and social confusion. Hence, the importance of preventive management of the cable through diagnosis is increasing to prevent it. Therefore, in this paper, a diagnostic sample cable was produced by simulating a part that could be a problem due to the installation, manufacturing defects, or deterioration of cables that can occur in the field. Dielectric loss Tangent (tan 𝛿; TD), and Partial Discharge(PD) tests were performed. Partial discharge and AC (60Hz) withstand voltage equipment using High-Frequency Current Transformer (HFCT) were applied After applying a VLF (Very Low Frequency) power supply with a frequency of 0.1Hz was applied. As a result, B and C phase defect samples at a 2.0U0 voltage through the VLF could measure the internal partial discharge in the A-phase normal sample cable from the noise at a 0.5U0 to 2.0U0 voltage. In addition, the 1.5U0 voltage was measured through the AC (60Hz) withstand voltage equipment of the commercial frequency to verify its effectiveness. Partial discharge in the run-off state was measured at a voltage of 1.0U0, and there was a risk when installing the equipment. AC power equipment showed a difficulty of movement by volume or weight. The diagnostic method, through the VLF of the quadrant state, revealed its safety and effectiveness.