• 제목/요약/키워드: low thermal process

검색결과 1,045건 처리시간 0.027초

열기상증착법을 이용한 3원계 MgZnO 나노구조의 합성 (Synthesis of ternary ZnMgO nanostructures through thermal evaporation)

  • 공보현;김동찬;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.184-185
    • /
    • 2006
  • Two-step growth to incorporate the Mg atoms in the ZnO nanorods fabricate by thermal evaporation process and also utilized the ZnO film as a template. In the first step of low temperature, Zn seed metals with low melting temperature formed the droplet, and then MgZnO ternary nanorods were grown by injecting oxygen and evaporating Mg atoms in high temperature process of the second step. The vertical growth of the MgZnO nanorods with large-area distribution and uniformity was successfully performed on the ZnO template. We investigated the shape of the vertically grown 1-D MgZnO nanorods and characterized the optical and crystal properties. We confirmed the incorporation of Mg atoms by the EDS and PL spectrum.

  • PDF

Design and Simulation of Heating Rubber Roller for Laminating Process

  • Hur, Shin;Woo, Chang Su
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.280-285
    • /
    • 2016
  • The purpose of this study is to get optimum design and operation conditions of the heating rubber roller for laminating process. The cause of performance degradation of heating rubber roller is delamination of rubber on metal tube, rubber aging due to high temperature. We measured the material properties of thermal expansion, thermal conductivity, specific heat and density and analyzed thermal distributions of rubber layer using finite element method. As a result of heat/flow analysis, the density distribution of heating coil must shorten the stabilization time by reducing the temperature deviation on the length direction at the temperature rising section after increasing the density of the area contacting with the laminate film at the center part which is an opposite of the current composition while enabling to maintain the temperature of heater to be consistent while maintaining the temperature deviation to be low when heat loss is created. Finally, we determined optimum heating method of heating rubber roller.

CF8M과 SA508 용접재의 열화에 따른 파괴인성에 관한 연구 (A Study on Fracture Toughness with Thermal Aging in CF8M/SA508 Welds)

  • 우승완;최영환;권재도
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1173-1178
    • /
    • 2006
  • In a primary reactor cooling system(RCS), a dissimilar weld zone exists between cast stainless steel(CF8M) in a pipe and low-alloy steel(SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time to a reactor operating temperature between 290 and $330^{\circ}C$, while no effect is observed in SA508 cl.3. The specimens are prepared by an artificially accelerated aging technique maintained for 300, 1800 and 3600 hrs at $430^{\circ}C$, respectively. The specimens for elastic-plastic fracture toughness tests are according to the process in the thermal notch is created in the heat affected zone(HAZ) of CF8M and deposited zone. From the experiments, the $J_{IC}$ value notched in HAZ of CF8M presented a rapid decrease up to 300 hours at $430^{\circ}C$ and slowly decreased according to the process in the thermal aging time. Also, the $J_{IC}$ value presented a lower value than that of the CF8M base metal. And, the $J_{IC}$ of the deposited zone presented the lowest value of all other cases.

더블로이유리 적용 창호의 구성요소에 따른 단열성능 비교 실험 (A Comparison of Thermal Performance of Double Low-E Glazing Window according to Various Material)

  • 장철용;안병립;김치훈;김준섭;이성재
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.133-137
    • /
    • 2011
  • Low-e glazing is classified as soft low-e glazing and hard low-e glazing. Hard low-e glazing can be temperable and its handling is comfortable because its coating film is a oxide film generated at high temperatures. But there is a fatal weakness that its insulation performance and shielding performance are lower compared to soft low-e glazing by low electrical conductivity of coating film. Soft low-e glazing is excellent because its coating film consists of Ag that is excellent electrical conductivity and it has strength that can supply various product consumers want. But soft low-e glazing has weaknesses that temperable and handling are difficult because Ag is oxidized easily. Therefore this study analyzes thermal performance of glazing by changing filling gas according to applying low-e glazing through simulation to judge performance before making sample. After this process, a comparative experimental study was done through TVS by making temperable low-e glazing.

  • PDF

Behaviors and Process Analyses of Spark Sintering for Powders Having a Low Sinterability

  • Matsugi, K.
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.127-133
    • /
    • 2012
  • The sintering behaviors and process parameters of some compounds (carbides, oxides, sulfides, borides) were investigated experimentally. These compounds were successfully consolidated and showed high densities. Some unique phenomena such as retardation of grain growth, suppression of thermal decomposition and maintenance of initial non-equilibrium phases, were observed by the proper control of process in spark sintering.

저온 태양열을 이용한 생물학적 오수 처리 장치 실증 실험 (Field Test for a Biological Nitrogen Treatment System with Low Temperature Solar Thermal Energy)

  • 정모;이동원
    • 한국태양에너지학회 논문집
    • /
    • 제28권2호
    • /
    • pp.34-41
    • /
    • 2008
  • A low-temperature solar thermal system assisting a biological nitrogen treatment reservoir was designed and field-tested. A large tank whose temperature was maintained at about $25-30^{\circ}C$ to enhance the performance of a biological nitrogen treatment process was heated by an array of flat plate solar collectors. Test results revealed that the overall collector efficiency was above 50% for the most cases tested. This high efficiency was possible owing to the relatively low collector temperature that can be traced back to the reservoir temperature. A substantial enhancement in nitrogen treatment was observed as a result of maintaining the reservoir temperature higher.

롤투롤 인쇄 전자 시스템에서 건조 온도와 유연기판의 열변형간 상관관계에 대한 연구 (A Study on the Correlation between Curing Temperature and Thermal Deformation of a Moving Web in Roll-to-Roll Printed Electronics)

  • 이종수;이창우
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.653-658
    • /
    • 2014
  • Roll-to-Roll printing process has become a great issue as a breakthrough for low cost and mass production of electronic devices such as organic thin film transistor, and etc. To print the electronic devices, multi-layer printing is essential, and high precision register control is required for this process. Unlike stop-and-repeat printing process, it is impossible to control the register in a static state since the roll-to-roll process is a continuous system. Therefore, the behavior of web such as polyethylene terephthalate (PET) and polyimide (PI) by the tensile and thermal stress generated in the roll-to-roll process as well as motor control of driven rolls has to be considered for a high precision register control. In this study, the correlation between curing temperature and thermal deformation of PET web is analyzed. Finally, it is verified experimentally that the temperature disturbance generates the more serious register error under the higher curing temperature.

저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(I) (Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (I))

  • 이재옥;송영훈
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.409-413
    • /
    • 2006
  • $150{\sim}200^{\circ}C$의 저온조건에 적용하기 위한 탈질공정으로서 저온 플라즈마 및 암모니아 SCR 공정을 복합시킨 탈질공정에 대한 실험적인 연구가 수행되었다. 실험결과 저온조건에서 일반적인 SCR 반응에 비해 매우 빠른 반응속도를 갖는 fast SCR 반응의 가능성을 확인할 수 있었으며, 효과적인 fast SCR 반응을 위해서는 SCR 반응기에 투입되는 $NO_{2}/NO_{x}$의 비가 0.3~0.5 범위에 있음을 알 수 있었다. 본 연구에서는 저온운전에 따른 암모늄염의 발생문제, 배기가스에 포함되어 있는 탄화수소가 공정에 미치는 영향, 유사한 공정과의 운전전력 비교 등 해당기술을 활용하기 위해 기본적으로 필요한 자료를 제공하고 있다.

Gate Workfunction Optimization of a 32 nm Metal Gate MOSFET for Low Power Applications

  • Oh Yong-Ho;Kim Young-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.237-240
    • /
    • 2006
  • The feasibility of a midgap metal gate is investigated for a 32 nm MOSFET for low power applications. The midgap metal gate MOSFET is found to deliver $I_{on}$ as high as a bandedge gate if a proper retrograde channel is used. An adequate design of the retrograde channel is essential to achieve the performance requirement given in the ITRS roadmap. A process simulation is also run to evaluate the feasibility of the necessary retrograde profile in manufacturing environments. Based on the simulated result, it is found that any subsequent thermal process should be tightly controlled to retain transistor performance, which is achieved using the retrograde doping profile. Also, the bandedge gate MOSFET is determined be more vulnerable to the subsequent thermal processes than the midgap gate MOSFET. A guideline for gate workfunction $(\Phi_m)$ is suggested for the 32 nm MOSFET.

Facile Preparation of Silver Nanoparticles and Application to Silver Coating Using Latent Reductant from a Silver Carbamate Complex

  • Kim, Kyung-A;Cha, Jae-Ryung;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.505-509
    • /
    • 2013
  • A low temperature ($65^{\circ}C$) thermal deposition process was developed for depositing a silver coating on thermally sensitive polymeric substrates. This low temperature deposition was achieved by chemical reduction of a silver alkylcarbamate complex with latent reducing agent. The effects of acetol as a latent reducing agent for the silver 2-ethylhexylcarbamate (Ag-EHCB) complex and their blend solutions were investigated in terms of reducing mechanism, and the size and shape of silver nanoparticles (Ag-NPs) as a function of reduced temperature and time, and PVP stabilizer concentration were determined. Low temperature deposition was achieved by combining chemical reduction with thermal heating at $65^{\circ}C$. A range of polymer film, sheet and molding product was coated with silver at thicknesses of 100 nm. The effect of process parameters and heat treatment on the properties of silver coatings was investigated.