• 제목/요약/키워드: low thermal expansion

검색결과 427건 처리시간 0.031초

Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성 (Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron)

  • 홍지화;백태현;김진국;최성진;김남수;강기환;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF

고분자 플라스틱 기판과 유리 기판위에 증착한 알류미늄 박막 특성 분석 (Characteristic Analysis of Al Films Grown on Plastic Substrates and Glass Substrates)

  • 이명재;곽성관;김동식;김장권
    • 대한전자공학회논문지TE
    • /
    • 제39권2호
    • /
    • pp.6-10
    • /
    • 2002
  • 플라스틱 기반 평판디스플레이 장치를 위한 Al 박막(1000-4000${\AA}$)을 직류-마그네트론 스퍼터링으로 유리 기판과 고분자 플라스틱 기판위에 증착하였다. 고분자 플라스틱 기판위에 증착된 Al박막의 전기적 특성을 향상시키고, 열 팽창을 줄이기 위하여 단계적 열 처리법을 사용하였다. 이러한 공정을 사용함으로써, 고분자 기판위에 증착된 박막의 크랙과 기판의 휨현상이 없는 Al 박막을 성공적으로 증착하였다. 또한, Al 박막의 열처리와 증착공정은 모두 200$^{\circ}C$ 이하에서 이루어 졌기 때문에, 이러한 저온 공정은 고분자 플라스틱 기판에 적용이 가능하다. Al 박막의 특성과 신뢰성을 조사하기 위하여 주사 전자 현미경(SEM), 원자력 현미경(AFM), X-선 회절 분석법(XRD)과 비저항등의 전기적 특성을 측정하였다.

The effect of repeated porcelain firings on corrosion resistance of different dental alloys

  • Tuncdemir, Ali Riza;Karahan, Ismail;Polat, Serdar;Malkoc, Meral Arslan;Dalkiz, Mehmet
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권1호
    • /
    • pp.44-50
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the effects of repeated porcelain firing process on the corrosion rates of the dental alloys. MATERIALS AND METHODS. Cr-Co, Cr-Ni and Pd-Ag alloys were used for this study. Each metal supported porcelain consisted of 30 specimens of 10 for 7, 9 and 11 firing each. Disc-shaped specimens 10 mm diameter and 3 mm thickness were formed by melting alloys with a propane-oxygen flame and casted with a centrifuge casting machine and then with the porcelain veneer fired onto the metal alloys. Corrosion tests were performed in quintuplicate for each alloy (after repeated porcelain firing) in Fusayama artificial saliva solution (pH = 5) in a low thermal-expansion borosilicate glass cell. Tamhane and Sheffe test was used to compare corrosion differences in the results after repeated firings and among 7, 9 and 11 firing for each alloy. The probability level for statistical significance was set at ${\alpha}$=0.05. RESULTS. The corrosion resistance was higher (30 mV), in case of 7 times firing (Commercial). On the other hand, it was lower in case of 11 times firing (5 mV) (P<.05). Conclusion. Repeated firings decreased corrosion resistance of Pd-Ag, Cr-Co and Cr-Ni alloys. The Pd-Ag alloy exhibited little corrosion in in vitro tests. The Cr-Ni alloy exhibited higher corrosion resistance than Cr-Co alloys in in vitro tests.

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

Plywood의 기계적 특성 및 파손 거동 분석에 관한 실험적 연구 (An Experimental Study on Mechanical Properties and Failure Behavior of Plywood)

  • 차승주;김정대;김정현;오훈규;김용태;박성보;이제명
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.335-342
    • /
    • 2019
  • The objective of this study is to analyze the mechanical properties of plywood used as a thermal insulating material for LNG CCS (Liquefied Natural Gas, Cargo Containment System). It is created by bonding an odd number of parallel and perpendicular direction for preventing contraction and expansion of wood. Also plywood is widely used as LNG CCS insulating material because of its durability, light weight and high stiffness. Since LNG CCS is loaded with liquid cargo, the impact load by sloshing during operation and the wide temperature range (room temperature, low temperature, cryogenic temperature) exposed during loading, unloading should be considered. The thickness of the plywood which is used for the membrane type MARKIII was selected as the thickness of the test specimen. In this present study, plywood is analyzed by the fracture behavior and mechanical properties of plywood by temperature and grain direction. In addition, it is necessary to analyze the fracture shape and predict the fracture strain by using regression model because the critical load may cause cracks inside the tank, which may affect the leakage of cryogenic liquid.

Feasibility study on the design of DC HTS cable core

  • Sim, Ki-Deok;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Su-Kil;Won, Young-Jin;Ko, Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.24-30
    • /
    • 2010
  • The renewable energy source is considered as a good measure to cope with the global warming problem and the fossil energy exhaustion. The construction of electric power plant such as an offshore wind farm is rapidly increasing and this trend is expected to be continued during this century. The bulky and long distance power transmission media is essential to support and promote the sustainable expansion of renewable energy source. DC power cable is generally considered as the best solution and the demand for DC electric power has been rapidly increasing. Especially, the high temperature superconducting (HTS) DC cable system begins to make a mark because of its advantages of huge power transmission capacity, low transmission loss and other environmental friendly aspects. Technical contents of DC HTS cable system are very similar to those of AC HTS cable system. However the DC HTS cable can be operated near its critical current if the heat generation is insignificant, while the operating current of AC HTS cable is generally selected at about 50~70% of the critical current because of AC loss. We chose the specifications of the cable core of 'Tres Amigas' project as an example for our study and investigated the heat generation when the DC HTS cable operated near the critical current by some electric and thermal analyses. In this paper, we listed some technical issues on the design of the DC HTS cable core and described the process of the cable core design. And the results of examination on the current capacity, heat generation, harmonic loss and current distribution properties of the DC HTS cable are introduced.

몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석 (Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness)

  • 문승준;김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

연구용 원자로의 건전성 평가를 위한 수치해석적 중성자 조사 재료변형 예측기법 개발 (A Numerical Technique for Predicting Deformation due to Neutron Irradiation for Integrity Assessment of Research Reactors)

  • 박준근;석태현;허남수
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.39-48
    • /
    • 2024
  • Research reactors are operated under ambient temperature and atmospheric pressure, which is much less severe conditions compared to those in typical nuclear power plants. Due to the high temperature, heat resistant materials such as austenite stainless steel should be used for the reactors in typical nuclear power plants. Whereas, as the effect of temperature is low for research reactors, materials with high resistance to neutron irradiation, such as zircaloy and beryllium, are used. Therefore, these conditions should be considered when performing integrity assessment for research reactors. In this study, a computational technique through finite element (FE) analysis was developed considering the operating conditions and materials of research reactor when conducting integrity assessment. Neutron irradiation analysis techniques using thermal expansion analysis were proposed to consider neutron irradiation growth and swelling in zirconium alloys and beryllium. A user subroutine program that can calculate the strain rate induced by neutron irradiation creep was developed for use in the commercial analysis program Abaqus. To validate the proposed technique and the user subroutine, FE analysis results were compared with hand-calculation results, and showed good agreement. Consequently, developed technique and user subroutine are suitable for evaluating structural integrity of research reactors.

HDTMA­, BDTDA­ 및 CP­스멕타이트의 물리­화학적 특성 (Physicochemical Properties of Organo­Smectites Modified by HDTMA, BDTDA, and CP)

  • 고상모;홍석정;송민섭
    • 한국광물학회지
    • /
    • 제16권4호
    • /
    • pp.295-305
    • /
    • 2003
  • 이 연구는 산업체에서 다양하게 활용될 수 있는 세 종류의 유기­스멕타이트를 제조하여 Na­스멕타이트와의 제반 물성을 비교함으로서 유기­스멕타이트의 활용을 위한 과학적인 자료를 제공하고자 한다. 이 연구를 위하여 제4가 암모늄 양이온에 속하는 Hexadecyl­trimethylammonium(HDTMA), Benzyldimethyltetradecylammonium(BDTDA) 및 Cetylpyridinium(CP) 염화물을 Na­스멕타이트에 치환시켜 세 종류의 유기­스멕타이트를 제조하였다. 유기­스멕타이트인 HDTMA­, BDTDA­ 및 CP­스멕타이트는 pH 9 정도로 비교적 높은 알칼리성을 나타내었다. 이들 유기­스멕타이트는 Na­스멕타이트에 비해 극히 낮은 팽윤도, 점도를 나타내고, 짧은 시간에 강한 응집이 초래되었다. 양이온 교환능과 동일한 양의 유기 양이온을 스멕타이트에 치환시켜 제조된 유기­스멕타이트의 저면간격은 HDTMA­스멕타이트가 $23.1\AA$, BDTDA­스멕타이트가 $19.2\AA$ 및 CP­스멕타이트가 $23.2\AA$로서, Na­스멕타이트의 $12.7\AA$에 비해 강한 격자 팽창이 초래 되었다. 유기­스멕타이트에 치환된 세 종류의 유기물은 $250^{\circ}C$에서 분해하기 시작하여 40$0^{\circ}C$ 부근의 온도에서 분해가 거의 종료되었다. 이는 연구된 세 종류의 유기­스멕타이트가 $250^{\circ}C$ 미만에서 안정함을 의미한다. 연구된 세 종류의 유기­스멕타이트는 대체로 유사한 광물학적, 물리­화학적 및 열적특성을 나타낸다. 이는 세 유기물의 화학적 성질의 유사성 때문일 것이다. 경제적인 면을 고려한다면 CP로 치환시킨 CP­스멕타이트의 활용이 매우 클 것으로 예측되며, 이에 대한 다양한 연구가 요구된다.

공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 -)

  • 정광섭;김민수;김용찬;박경근;박병윤;조금남
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.