• 제목/요약/키워드: low temperature adhesion

검색결과 208건 처리시간 0.022초

Lead free, Low temperature sealing materials for soda lime glass substrates in Plasma Display Panel (PDP)

  • Lee, Heon-Seok;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Yoon-Hee;Lee, Suk-Hwa;Kim, Il-Won;Lee, Jong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.373-376
    • /
    • 2008
  • New glass compositions for lead free, low temperature sealing glass frit was examined in $ZnO-V_2O_5-P_2O_5$ glass system which can be used sealing material for PDP to be made of soda lime glass substrates. Among many glass compositions, KFS-C glass showed low glass transition point (Tg) and good fluidity and adhesion characteristics when it was tested by flow button method at low temperature of $420^{\circ}C$. Its Tg was $317^{\circ}C$ and thermal expansion coefficient (CTE) was $70{\times}10^{-7}/K$. The glass frit was mixed with an organic vehicle to make a paste and it was dispensed and sealed with soda lime glass substrates at $420^{\circ}C$ for 10min. Sealed glass panels also showed good adhesion strength even sealed at low temperature of $420^{\circ}C$.

  • PDF

Investigated properties of Low temperature curing Ag Paste for Silicon Hetero-junction Solar Cell

  • Oh, Donghyun;Jeon, Minhan;Kang, Jiwoon;Shim, Gyeongbae;Park, Cheolmin;Lee, Youngseok;Kim, Hyunhoo;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.160-160
    • /
    • 2016
  • In this study, we applied the low temperature curing Ag paste to replace PVD System. The electrode formation of low temperature curing Ag paste for silicon Hetero-junction solar cells is important for improving device characteristics such as adhesion, contact resistance, fill factor and conversion efficiency. The low temperature curing Ag paste is composed various additives such as solvent, various organic materials, polymer, and binder. it depends on the curing temperature conditions. The adhesion of the low temperature curing Ag paste was decided by scratch test. The specific contact resistance was measured using the transmission line method. All of the Ag electrodes were experimented at various curing temperatures within the temperature range of $160^{\circ}C-240^{\circ}C$, at $20^{\circ}C$ intervals. The curing time was also changed by varying the conditions of 10-50min. In the optimum curing temperature $200^{\circ}C$ and for 20 min, the measured contact resistance is $19.61m{\Omega}cm^2$. Over temperature $240^{\circ}C$, confirmed bad contact characteristic. We obtained photovoltaic parameter of the industrial size such as Fill Factor (FF), current density (Jsc), open-circuit voltage (Voc) and convert efficiency of up to 76.2%, 38.1 mA/cm2, 646 mV and 18.3%, respectively.

  • PDF

불소수지의 무전해 동도금을 위한 단계적 플라즈마 전처리법에 관한 연구 (Study on Two Step Plasma Treatment for Electroless Cu Plating of Fluoropolymer)

  • 신승한;한성호;김영석
    • 한국표면공학회지
    • /
    • 제38권3호
    • /
    • pp.118-125
    • /
    • 2005
  • Low temperature plasma treatment with different gases and rf powers were performed to improve the adhesion strength between polytetrafluoroethylene(PTFE) and electroless deposited copper. According to the research, $H_2$ plasma having hydrogen radical was more effective in surface polarity modification than $O_2$ plasma due to the defluorination reaction. However, surface roughness of PTFE was more increased with $O_2$ than $H_2$ plasma. PTFE treated with $120W-O_2$ plasma and $250w-H_2$ plasma, consecutively showed rougher surface than single step $250w-H_2$ plasma treated one and more hydrophilic than single step $120W-O_2$ plasma treated one. And it showed 5B tape test grade, which is better adhesion property than 1B or 3B obtained by single step plasma treatment. In addition, adhesion strength between PTFE and Cu deposit is also deeply affected by residual water on its interface.

SIS-SBS 개질아스팔트 방수시트재 물성 최적화 (Optimization to Prepare SIS-SBS Modified Asphalt for Waterproof-sheet)

  • 임광희
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.690-697
    • /
    • 2017
  • 본 연구에서는 방수시트재를 위한 아스팔트의 styrene-butadiene-styrene (SBS)와 styrene-isoprene-styrene (SIS)에 의한 개질에 있어서 자가치유성을 가지는 개질아스팔트 방수시트재의 연화점(softening point), 침입도(penetration), 저온굴곡저항성능(low temperature flexibility), 점도(viscosity) 및 부착성능(adhesion) 등의 물성을 관찰하고, 반응표면분석법(response surface methodology, RSM)을 활용하여 아스팔트 질량 대비 SBS와 SIS의 적정조성을 도출하고 자가치유성을 가지는 개질아스팔트 방수시트재의 물성을 최적화하였다. 고온에서 측정이 수행되는 연화점과 점도는 SBS 또는 SIS의 함량이 증가함에 따라서 유의하게 값이 증가하였다. 그러나 함량 대비 연화점과 점도 증가분은 SBS 경우가 SIS보다 커짐이 관찰되었다. 이러한 원인은 SBS와 SIS의 열적거동의 차이 때문인데, SBS는 고온에서 점도 상승을 동반하는 겔화(gelation)가 되어 가교도가 커지나 SIS는 점도감소를 초래하는 폴리이소프렌 블록의 사슬분리(chain scission) 때문에 사슬꼬임(chain entanglement)이 상대적으로 적어지기 때문이다. 반면에 SIS-SBS 개질아스팔트는 상온에서 측정되는 침입도, 부착성능 및 저온굴곡성능에 대하여, 아스팔트 63 g을 기본으로 SIS 4~5 g과 SBS 8.5 g의 조성에서 최소 탄성거동을 나타내어 최대 침입도 및 최대 부착성능과 최저 저온굴곡성능 값을 보였다.

상온 및 저온에서의 탄소와 유리섬유/에폭시 복합재료의 계면특성 비교 (Comparison of Interfacial Aspects of Carbon and Glass Fibers/Epoxy Composites by Microdroplet Tests at Low and Room Temperatures)

  • 왕작가;공조엘;김명수;박종만;엄문광
    • 접착 및 계면
    • /
    • 제10권4호
    • /
    • pp.162-168
    • /
    • 2009
  • 극저온 온도에서 최적복합재료물성치의 사전 연구로서, 실온과 저온, 즉 $25^{\circ}C$$-10^{\circ}C$에서 카본 혹은 유리섬유가 함침된 에폭시 복합재료의 계면 물성치가 미세역학인 시험법을 사용하여 평가되었다. 인장과 압축하중 조건에서 저온에서의 기계적인 강성도가 상온에서의 강성도보다 증대하였다. 실온과 저온에서의 계면전단강도가 에폭시 기지의 인성과 겉보기 강성도를 사용하여 상호 비교하였다. 기지의 강성도 향상으로 인해 계면전단강도가 실온보다 저온에서 높게 나타났다. 유리와 카본 섬유의 인장 강도들의 통계적인 분포가 다른 온도의 범위 평가되었고, 이것들은 섬유의 고유결함과 견고함에 의해서 결정된다.

  • PDF

Sn-CU계 다원 무연솔더의 미세구조와 납땜특성 (Microstructures and Solderability of Multi-composition Sn-Cu Lead-free Solders)

  • 김주연;배규식
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.598-603
    • /
    • 2005
  • To develope new lead-free solders with the melting temperature close to that of Sn-37Pb$(183^{\circ}C)$, Sn-0.7Cu-5Pb-1Ga, Sn-0.7Cu-5Pb-1Ag, Sn-0.7Cu-5Pb-5Bi-1Ag, and Sn-0.7Cu-SBi-1Ag alloys were composed by adding low-netting elements such as Ga, Bi, Pb, and Ag to Sn-0.7Cu. Then the melting temperatures, microstructures, wettability, and adhesion properties of these alloys were evaluated. DSC analysis showed that the melting temperature of Sn-0.7Cu-SPb-1Ga was $211^{\circ}C$, and those of other alloys was in the range of $192\~200^{\circ}C$. Microstructures of these alloys after heat-treatment at $150^{\circ}C$ for 24 hrs were basically composed of coarsely- grown $\beta-Sn$ grains, and $Cu_6Sn_5$ and $Ag_3Sn$ intermetallic precipitates. Sn-0.7Cu-5Pb-1Ga and Sn-0.7Cu-5Pb-5Bi-1Ag showed excellent wettability, while Sn-0.7Cu-5Bi-1Ag and Sn-0.7Cu-5Pb-5Bi-1Ag revealed good adhesion strength with the Cu substrates. Among 4 alloys, Sn-0.7Cu-5Pb-5Bi-1Ag with the lowest melting temperature $(192^{\circ}C)$ and relatively excellent wettability and adhesion strength was suggested to be the best candidate solder to replace Sn-37Pb.

마그네슘 합금에 대한 DLC 코팅의 온도에 따른 마찰기구 해석 (Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures)

  • 권혁우;김명곤;허하리;김용석
    • 소성∙가공
    • /
    • 제24권6호
    • /
    • pp.405-410
    • /
    • 2015
  • Sheet-forming of Mg alloys is conducted at elevated temperatures (250℃) due to the low formability at room temperature. The high-temperature process often gives rise to surface damage on the alloy (i.e. galling.) In the current study, the frictional characteristics of DLC coating slid against an AZ31 Mg alloy at various temperatures were investigated. The coating has been used widely for low-friction processes. Dry-sliding friction and galling characteristics of an AZ31 Mg alloy (disk), which slid against uncoated and a DLC-coated STD-61 steel (pin), were investigated using a reciprocating-sliding tribometer at room temperature and 250℃. To represent the real sliding phenomena during a sheet metal forming process, single-stroke tests were used (10mm stroke length) rather than a reciprocating long sliding-distance test. The DLC coating suppressed adhesion between the alloy and the tool steel at room temperature, and exhibited a low friction coefficient. However, during sliding at 250℃, severe adhesion occurred between the two surfaces, which resulted in a high friction coefficient and galling.

MTS를 사용한 LPCVD 법에 의한 (100)Si 위의 $\beta$-SiC 증착 및 계면특성 (Interfacial Characteristics of $\beta$-SiC Film Growth on (100) Si by LPCVD Using MTS)

  • 최두진;김준우
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.825-833
    • /
    • 1997
  • Silicon carbide films were deposited by low pressure chemical vapor deposition(LPCVD) using MTS(CH3SICl3) in hydrogen atmosphere on (100) Si substrate. To prevent the unstable interface from being formed on the substrate, the experiments were performed through three deposition processes which were the deposition on 1) as received Si, 2) low temperature grown SiC, and 3) carbonized Si by C2H2. The microstructure of the interface between Si substrates and SiC films was observed by SEM and the adhesion between Si substrates and SiC films was measured through scratch test. The SiC films deposited on the low temperature grown SiC thin films, showed the stable interfacial structures. The interface of the SiC films deposited on carbonized Si, however, was more stable and showed better adhesion than the others. In the case of the low temperature growth process, the optimum condition was 120$0^{\circ}C$ on carbonized Si by 3% C2H2, at 105$0^{\circ}C$, 5 torr, 10 min, showed the most stable interface. As a result of XRD analysis, it was observed that the preferred orientation of (200) plane was increased with Si carbonization. On the basis of the experimental results, the models of defect formation in the process of each deposition were compared.

  • PDF

전자빔 증착법으로 제작한 Cu 박막의 부착력과 저항율 특성 (The Resistivity Properties and Adhesive Strength of Cu Thin Firms Fabricated by EBE Method)

  • 신중홍;유충희;백상봉
    • 한국전기전자재료학회논문지
    • /
    • 제18권1호
    • /
    • pp.75-80
    • /
    • 2005
  • In this thesis, We Fabricated Cu thin films of 1000 $\AA$, 3000 $\AA$, and 6000 $\AA$ thickness on the single crystal sapphire, polycrystal alumina, and amorphous slide glass substrates deposited by electron beam evaporation(EBE) method. We investigated properties of resistivity and adhesion of these Cu thin films under various conditions, substrate temperature(room temperature, 10$0^{\circ}C$, 20$0^{\circ}C$ under vacuum) and annealing temperatures(400 $^{\circ}C$, 600 $^{\circ}C$ for 30 min after the deposition). We found that these adhesion was increased in order of slide glass, sapphire, and alumina. The adhesion of the Cu thin films on alumina was high value about 4 times, compared with that of the Cu thin films on slide glass. We found that these resistivities were decreased with increasing substrate temperature and thin film thickness. The resistivity(2.05 $\mu$Ω\ulcornercm) of the Cu thin films with 6000 $\AA$ thickness at 200 $^{\circ}C$ on the slide glass was low value, compared with that of aluminum(2.66 $\mu$Ω\ulcornercm).