• Title/Summary/Keyword: low slope

Search Result 974, Processing Time 0.035 seconds

Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis (사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석)

  • Baek, Yong;Bae, Gyu-Jin;Kwon, O-Il;Jang, Su-Ho;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF

Effects of Ramp Slope and Height on Usability and Physiology during Wheelchair Driving (경사로의 기울기와 높이에 따른 휠체어 사용자의 사용성 및 생리적 특성 분석)

  • Kim, Chung-Sik;Lee, Dong-Hun;Lee, Jee-Hea;Kwon, Sung-Hyuk;Chung, Min-K.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.681-686
    • /
    • 2010
  • Although the height of a ramp is an important design element, it has not been considered in prior studies. Therefore, in this study, the ramp slope and height are considered as independent variables. To analyze the effects of the slope and height, five levels of slope (1:6, 1:8, 1:10, 1:12 and 1:14) and three levels of height (15cm, 30cm and 45cm) are considered. For the dependent variables, the total time, velocity and perceived discomfort were considered as usability measures, pulse rate changes and EMG signals of four related muscles (extensor carpi radialis, triceps brachii, anterior deltoid and posterior deltoid) were considered as physiology measures. As a result, differences among usability and physiological characteristic for the five slopes increased as the height increased. Additionally, slope effects were minor when the height was low (15cm). Almost domestic/international regulations and guidelines related to ramp recommended 1:12 slope for the ramp design, however, there was no significant difference between 1:10 and 1:12 according to result of this study. In addition, slope effects were minor at a low height; thus, a slope of 1:8 can be recommended if the installation space for a gentler ramp is not sufficient.

The Feasibility Study of Low-rise Housing Plans on Hilly Site and Design Model Proposals (경사지 활용 저층 집합주택의 개발가능성과 경사도별 모델 제안)

  • Lee, Hyun-Jin;Yang, Woo-Hyun
    • Journal of the Korean housing association
    • /
    • v.20 no.1
    • /
    • pp.45-58
    • /
    • 2009
  • This research starts from the questioning of current housing development on the hilly site in Korea. It aims to investigate various design techniques of low-rise housing as an alternative housing plan on hilly sites. Several generic solutions of the combination of building type and road pattern are tested for a simulation process, and evaluated in terms of crucial design issues; development density, parking space and open space. As a result, four reasonable models are selected for making full use of geographical features of hilly site, two models each land slope of $18^{\circ}$ and $26^{\circ}$. Several design techniques for each model are also suggested, in ensuring the development feasibility by considering land slope, vehicular access and parking, common open space, and community facilities.

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

Evaluation of Slope Failure Possibility on Forest Road Using Fuzzy Theory(I) - On the Fill Slope of the Metamorphic Rock Area - (Fuzzy이론(理論)을 이용(利用)한 임도사면(林道斜面)의 붕괴가능성(崩壞可能性) 평가(評價)(I) - 변성암지역(變成岩地域)의 성토사면(盛土斜面)을 중심(中心)으로 -)

  • Cha, Du Song;Ji, Byoung Yun;Oh, Jae Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • This study was carried out to evaluate the fill slope failure possibility of forest road in Metamorphic rock area using fuzzy theory which is non-linear model. The results were summarized as follows. The potential slope failure by nine factors was mainly occurred under the such conditions as the total road width ranging from 4m to 5m, longitudinal gradients below $2^{\circ}$, fill slope length greater than 8m, fill slope gradients steeper than $40^{\circ}$, road on ridge position, soil types with weathered rock, slope gradients steeper than $40^{\circ}$, aspect of NW, and longitudinal slope form in convexity. The weight of importance by factors on fill slope failure was ranked in the order of fill slope length, fill slope gradient, road position, soil type, aspect and longitudinal slope form. The analysis showed that the fill slope failure possibility was low with less than 0.485 of the fuzzy integral value and high with more than 0.620 of the value. And the discriminant accuracy was 74.6%. The analysis with six out of nine factors indicated that the possibility was low with less than 0.441 of the fuzzy integral value and high with more than 0.583 of the value. In this case, the discriminant accuracy was slightly increased to 78.0%.

  • PDF

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Effect of Acid Drainage and Countermeasure about Road Cut Slope Environment (도로절개면 환경에 관한 산성배수의 영향과 대책)

  • 김진환;이종현;구호본;박미선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.481-484
    • /
    • 2003
  • Sulfide minerals contacted with air and water in coal seam cause oxidation reactions. This oxidation reactions make low pH of groundwater and surface water(Acid Drainage). The reddish brown precipitate collected from the cut slope of the study area was estimated using the X-Ray Diffractometer(XRD). XRD results show that the cut slope was affected by Acid Drainage. The cut slope exposured to Acid Drainage become weak about chemical weathering and defile the appearance of the road. Drainage facilities are very important in Cut Slope under Acid Drainage influence. Reactions between Coal seam and water cause chemical weathering and environmental problem. Therefore It is important to control the transfer paths of groundwater and surface water and to install water collecting facilities

  • PDF

A Preliminary Study on Submarine Slope Failure of Gas Hydrate-bering Sediments (가스 하이드레이트가 매장된 해저사면의 붕괴에 관한 기초적 연구)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.399-404
    • /
    • 2008
  • The influence of gas hydrate dissociation on submarine slope stability was studied in this paper. Gas hydrates are stable under high pressure and low temperature conditions. Once gas hydrate dissociates due to natural or human activities, it generates large amount of gas and water. During gas hydrate dissociation, a pore pressure between soil particles increases and results in the loss of an effective stress and degradation of soil stiffness. A pore pressures model was proposed to calculated excess pore pressures generated by gas hydrate dissociation at the Storegga Slide. A slope stability analysis for the Storegga Slide using a two dimensional finite difference method was carried out by considering excess pore pressures due to gas hydrate dissociation. Since the excess pore pressure calculated by the proposed method resulted in the considerable loss of stiffness and strength in slope, a submarine slope failure occurred at the Storegga slide was well simulated.

  • PDF

Plant Community Structure by the Slope and Altitude of Tongdaesan Area in Odaesan National Park (오대산 국립공원 동대산지역의 사면. 해발고에 따른 식물군집구조)

  • Lee, Kyong-Jae;Cho, Woo;Hwang, Seo-Hyun;Yim, Kyong-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.9 no.2
    • /
    • pp.133-146
    • /
    • 1996
  • This study was conducted to analyse plant community structure by the altityed and slope in Tongdaesan area, Odaesan National Park. Sixty-three plots(each plots size was 100m$^{2}$) were set up and PWINSPAN and DCA method were used for vegetational structure analysis. Division of community was cleared altitude than part of slope With increasing elevation the importance values of Quercus mongolica, Tilia amurensis increased, while those of Fraxinus mandshurica, Betula schmidtii, Cornus controversa decreased. Survey plots were divided into 6 groups by the TWINSPAN and DCA method. The divided groups are T. amurensis community(I), Q. mongolica community(II) of upper part of slope of east and west, Q. mongolica-T. amurensis community(III) of middle part of slope, Q. mongolica-F. mandshurica community(IV), Pinus densiflora-B. schmidtii-Carpinus laxiflora community(V) of low elevation of east, F. mandshurica-C. controversa community(VI)of low elevation of west. Also, vegetational change were showed slope of east and west in Tongdaesan except top area for the last twenty yeras.

  • PDF

The Gradient Analysis of the Korean Peninsula by using DEM (DEM을 이용한 한반도 지형의 경사도 분석)

  • Lee, Kum-Sam;Jo, Wha-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2000
  • The slope gradient of the Korean Peninsula was analyzed by using DEM(DTED level 1). The Peninsula has high percentages of gentle slopes. But low plains and very steep slope regions are scarcely distributed in the Peninsula. Altitude lower than 150m areas are composed of plains and undulated plains. The steepest and most rugged topographies are observed in the range of altitude from 500m to 1,000m areas. The areas of altitude greater than 1,000m show plateau landscapes. By overlapping digital geology maps and the gradient grade maps, We revealed the characteristics of slope regions by geological districts. High latitude with steep slope are well developed in the geological districts of granitic gneiss(ARgr) and gneiss($PR_1$) of the Pre-Cambrian, sandstone of the Paleozoic era(P-T), and sedimentary rocks of the Mesozoic era($J_2$). Low altitude with gentle slope areas are representative in the districts of granite of the Mesozoic era($Jgr_1$), the Cretaceous sedimentary rocks of the Mesozoic era($K_1$, $K_2$) and the Cenozoic strata(N). Basalt extruded the Quaternary($Q_1$) are observed in the areas of very gentle slope but greater than 1,000m altitude.

  • PDF